Abstract
Regional cerebral glucose utilization was studied by 2-deoxy[14C]glucose autoradiography in morphine-dependent rats and during naloxone-induced morphine withdrawal. In morphine-dependent rats, glucose utilization was increased compared with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, anterior ventral thalamus, and medial habenular nucleus. On precipitation of morphine withdrawal by subcutaneous administration of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose utilization was increased in the central nucleus of amygdala (51%), lateral mammillary nucleus (40%), lateral habenular nucleus (39%), medial mammillary nucleus (35%), and medial septal nucleus (35%) (all, P less than 0.01). Significant increases also occurred in several other limbic structures including interpeduncular nucleus, anterior medial and ventral thalamic nuclei, and lateral septal nucleus. Knowledge of the functional cerebral anatomy of the morphine-withdrawal syndrome should facilitate studies directed toward understanding the molecular mechanisms of opiate withdrawal.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atweh S. F., Kuhar M. J. Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 1977 Oct 14;134(3):393–405. doi: 10.1016/0006-8993(77)90817-4. [DOI] [PubMed] [Google Scholar]
- Bläsig J., Herz A., Reinhold K., Zieglgänsberger S. Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats. Psychopharmacologia. 1973 Oct 23;33(1):19–38. doi: 10.1007/BF00428791. [DOI] [PubMed] [Google Scholar]
- COWAN W. M., RAISMAN G., POWELL T. P. THE CONNEXIONS OF THE AMYGDALA. J Neurol Neurosurg Psychiatry. 1965 Apr;28:137–151. doi: 10.1136/jnnp.28.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvino B., Lagowska J., Ben-Ari Y. Morphine withdrawal syndrome: differential participation of structures located within the amygdaloid complex and striatum of the rat. Brain Res. 1979 Nov 9;177(1):19–34. doi: 10.1016/0006-8993(79)90915-6. [DOI] [PubMed] [Google Scholar]
- Collins R. C., Kennedy C., Sokoloff L., Plum F. Metabolic anatomy of focal motor seizures. Arch Neurol. 1976 Aug;33(8):536–542. doi: 10.1001/archneur.1976.00500080014003. [DOI] [PubMed] [Google Scholar]
- Collins R. C. Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]deoxyglucose. Brain Res. 1978 Jul 21;150(3):487–501. doi: 10.1016/0006-8993(78)90815-6. [DOI] [PubMed] [Google Scholar]
- Dunwiddie T., Mueller A., Palmer M., Stewart J., Hoffer B. Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. I. Effects on pyramidal cell activity. Brain Res. 1980 Feb 24;184(2):311–330. doi: 10.1016/0006-8993(80)90801-x. [DOI] [PubMed] [Google Scholar]
- Frenk H., Urca G., Liebeskind J. C. Epileptic properties of leucine- and methionine-enkephalin: comparison with morphine and reversibility by naloxone. Brain Res. 1978 May 26;147(2):327–337. doi: 10.1016/0006-8993(78)90843-0. [DOI] [PubMed] [Google Scholar]
- Herkenham M., Pert C. B. In vitro autoradiography of opiate receptors in rat brain suggests loci of "opiatergic" pathways. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5532–5536. doi: 10.1073/pnas.77.9.5532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy C., Des Rosiers M. H., Sakurada O., Shinohara M., Reivich M., Jehle J. W., Sokoloff L. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4230–4234. doi: 10.1073/pnas.73.11.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krettek J. E., Price J. L. A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol. 1978 Mar 15;178(2):255–280. doi: 10.1002/cne.901780205. [DOI] [PubMed] [Google Scholar]
- Krettek J. E., Price J. L. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol. 1978 Mar 15;178(2):225–254. doi: 10.1002/cne.901780204. [DOI] [PubMed] [Google Scholar]
- Lee H. K., Dunwiddie T., Hoffer B. Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability. Brain Res. 1980 Feb 24;184(2):331–342. doi: 10.1016/0006-8993(80)90802-1. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A., Siggins G. R., Ling N., Bloom F. E., Guillemin R. Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2584–2588. doi: 10.1073/pnas.74.6.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sar M., Stumpf W. E., Miller R. J., Chang K. J., Cuatrecasas P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol. 1978 Nov 1;182(1):17–37. doi: 10.1002/cne.901820103. [DOI] [PubMed] [Google Scholar]
- Sharp F. R., Kauer J. S., Shepherd G. M. Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation. Brain Res. 1975 Nov 21;98(3):596–600. doi: 10.1016/0006-8993(75)90377-7. [DOI] [PubMed] [Google Scholar]
- Simantov R., Kuhar M. J., Uhl G. R., Snyder S. H. Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci U S A. 1977 May;74(5):2167–2171. doi: 10.1073/pnas.74.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
- Steward O., Smith L. K. Metabolic changes accompanying denervation and reinnervation of the dentate gyrus of the rat measured by [3H]2-deoxyglucose autoradiography. Exp Neurol. 1980 Sep;69(3):513–527. doi: 10.1016/0014-4886(80)90048-5. [DOI] [PubMed] [Google Scholar]
- Uhl G. R., Kuhar M. J., Synder S. H. Enkephalin-containing pathway: amygdaloid efferents in the stria terminalis. Brain Res. 1978 Jun 23;149(1):223–228. doi: 10.1016/0006-8993(78)90602-9. [DOI] [PubMed] [Google Scholar]
- Wei E., Loh H. H., Way E. L. Quantitative aspects of precipitated abstinence in morphine-dependent rats. J Pharmacol Exp Ther. 1973 Feb;184(2):398–403. [PubMed] [Google Scholar]
- Weinberger J., Greenberg J. H., Waldman M. T., Sylvestro A., Reivich M. The effect of scopolamine on local glucose metabolism in rat brain. Brain Res. 1979 Nov 16;177(2):337–345. doi: 10.1016/0006-8993(79)90784-4. [DOI] [PubMed] [Google Scholar]
- Wooten G. F., Collins R. C. Metabolic effects of unilateral lesion of the substantia nigra. J Neurosci. 1981 Mar;1(3):285–291. doi: 10.1523/JNEUROSCI.01-03-00285.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wooten G. F., Collins R. C. Regional brain glucose utilization following intrastriatal injections of kainic acid. Brain Res. 1980 Nov 10;201(1):173–184. doi: 10.1016/0006-8993(80)90782-9. [DOI] [PubMed] [Google Scholar]
- Zieglgänsberger W., French E. D., Siggins G. R., Bloom F. E. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science. 1979 Jul 27;205(4404):415–417. doi: 10.1126/science.451610. [DOI] [PubMed] [Google Scholar]






