Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jun;79(11):3498–3502. doi: 10.1073/pnas.79.11.3498

Bacteriophage lambda DNA packaging: scanning for the terminal cohesive end site during packaging.

M Feiss, W Widner
PMCID: PMC346448  PMID: 6285351

Abstract

Bacteriophage lambda packages the DNA of the related phage 21 poorly [Hohn, B. (1975) J. Mol. Biol. 98, 93--106]. To understand the nature of the packaging defect, the interaction of the cohesive end site (cos) specific for phage 21 (cos phi 21) with phage lambda terminase has been investigated. The ability of lambda terminase to cleave cos phi 21 was studied in vitro; lambda terminase cleaved cos phi 21 only 1% as well as it cleaved the phage lambda cohesive end site (cos lambda). In vitro packaging experiments showed that the lambda and 21 packaging specificities observed in vivo are also found in vitro. The cos cleavage reaction was modified so that competition experiments could be performed; these experiments showed that cos phi 21 was unable to bind lambda terminase, thus identifying the nature of the defect. Previous work [Feiss, M., Fisher, R. A., Siegele, D. A., Nichols, B. P. & Donelson, J. E. (1979) Virology 92, 56--67] has shown that the base pairs giving lambda or 21 packaging specificity are at the left end of the chromosome, outside the 22-base-pair symmetry region that includes the annealed cohesive ends. Therefore, terminase binding to cos requires interactions with base pairs to the Nu1 side of the cohesive end symmetry segment. The evidence supports the proposition that cos consists of adjacent sites for binding of terminase and for nicking by terminase. Because cos phi 21 can be cut by lambda terminase to terminate DNA packaging, it is proposed that the terminase that binds and nicks at the initial cos site is brought into contact with the terminal cos site by the packaging process. Terminase recognizes and nicks the cohesive end sequence of the terminal cos without requiring the binding site.

Full text

PDF
3498

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker A., Gold M. Enzymatic breakage of the cohesive end site of phage lambda DNA: terminase (ter) reaction. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4199–4203. doi: 10.1073/pnas.75.9.4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker A., Marko M., Gold M. Early events in the in vitro packaging of bacteriophage lambda DNA. Virology. 1977 May 1;78(1):291–305. doi: 10.1016/0042-6822(77)90100-3. [DOI] [PubMed] [Google Scholar]
  3. Becker A., Murialdo H., Gold M. Studies on an in vitro system for the packaging and maturation of phage lambda DNA. Virology. 1977 May 1;78(1):277–290. doi: 10.1016/0042-6822(77)90099-x. [DOI] [PubMed] [Google Scholar]
  4. Blattner F. R., Blechl A. E., Denniston-Thompson K., Faber H. E., Richards J. E., Slightom J. L., Tucker P. W., Smithies O. Cloning human fetal gamma globin and mouse alpha-type globin DNA: preparation and screening of shotgun collections. Science. 1978 Dec 22;202(4374):1279–1284. doi: 10.1126/science.725603. [DOI] [PubMed] [Google Scholar]
  5. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science. 1977 Apr 8;196(4286):161–169. doi: 10.1126/science.847462. [DOI] [PubMed] [Google Scholar]
  6. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  7. Clewell D. B. Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol. 1972 May;110(2):667–676. doi: 10.1128/jb.110.2.667-676.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmons S. W. Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J Mol Biol. 1974 Mar 15;83(4):511–525. doi: 10.1016/0022-2836(74)90511-7. [DOI] [PubMed] [Google Scholar]
  9. Feiss M., Bublitz A. Polarized packaging of bacteriophage lambda chromosomes. J Mol Biol. 1975 Jun 5;94(4):583–594. doi: 10.1016/0022-2836(75)90323-x. [DOI] [PubMed] [Google Scholar]
  10. Feiss M., Campbell A. Duplication of the bacteriophage lambda cohesive end site: genetic studies. J Mol Biol. 1974 Mar 15;83(4):527–540. doi: 10.1016/0022-2836(74)90512-9. [DOI] [PubMed] [Google Scholar]
  11. Feiss M., Fisher R. A., Crayton M. A., Egner C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. Virology. 1977 Mar;77(1):281–293. doi: 10.1016/0042-6822(77)90425-1. [DOI] [PubMed] [Google Scholar]
  12. Feiss M., Fisher R. A., Siegele D. A., Nichols B. P., Donelson J. E. Packaging of the bacteriophage lambda chromosome: a role for base sequences outside cos. Virology. 1979 Jan 15;92(1):56–67. doi: 10.1016/0042-6822(79)90214-9. [DOI] [PubMed] [Google Scholar]
  13. Hohn B. DNA as substrate for packaging into bacteriophage lambda, in vitro. J Mol Biol. 1975 Oct 15;98(1):93–106. doi: 10.1016/s0022-2836(75)80103-3. [DOI] [PubMed] [Google Scholar]
  14. Hohn T., Katsura I. Structure and assembly of bacteriophage lambda. Curr Top Microbiol Immunol. 1977;78:69–110. doi: 10.1007/978-3-642-66800-5_3. [DOI] [PubMed] [Google Scholar]
  15. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  16. Kaiser D., Syvanen M., Masuda T. DNA packaging steps in bacteriophage lambda head assembly. J Mol Biol. 1975 Jan 15;91(2):175–186. doi: 10.1016/0022-2836(75)90158-8. [DOI] [PubMed] [Google Scholar]
  17. Miller G., Feiss M. Cohesive end annealing and the helper-mediated transformation system of phage lambda. Virology. 1981 Mar;109(2):379–390. doi: 10.1016/0042-6822(81)90508-0. [DOI] [PubMed] [Google Scholar]
  18. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  19. Skalka A. M. DNA replication--bacteriophage lambda. Curr Top Microbiol Immunol. 1977;78:201–237. [PubMed] [Google Scholar]
  20. Southern E. Gel electrophoresis of restriction fragments. Methods Enzymol. 1979;68:152–176. doi: 10.1016/0076-6879(79)68011-4. [DOI] [PubMed] [Google Scholar]
  21. Sternberg N., Tiemeier D., Enquist L. In vitro packaging of a lambda Dam vector containing EcoRI DNA fragments of Escherichia coli and phage P1. Gene. 1977 May;1(3-4):255–280. doi: 10.1016/0378-1119(77)90049-x. [DOI] [PubMed] [Google Scholar]
  22. Szybalski E. H., Szybalski W. A comprehensive molecular map of bacteriophage lambda. Gene. 1979 Nov;7(3-4):217–270. doi: 10.1016/0378-1119(79)90047-7. [DOI] [PubMed] [Google Scholar]
  23. Weigel P. H., Englund P. T., Murray K., Old R. W. The 3'-terminal nucleotide sequences of bacteriophage lambda DNA. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1151–1155. doi: 10.1073/pnas.70.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weisberg R. A., Sternberg N., Gallay E. The nu1 gene of coliphage lambda. Virology. 1979 May;95(1):99–106. doi: 10.1016/0042-6822(79)90404-5. [DOI] [PubMed] [Google Scholar]
  25. Wu R., Taylor E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol. 1971 May 14;57(3):491–511. doi: 10.1016/0022-2836(71)90105-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES