Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jul;79(13):3978–3982. doi: 10.1073/pnas.79.13.3978

Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase.

T L Hill, G Inesi
PMCID: PMC346559  PMID: 6213963

Abstract

The cooperative equilibrium binding of Ca2+ by sarcoplasmic reticulum ATPase, as modulated by pH, is analyzed by statistical mechanical treatment of a theoretical model. The model consists of four equivalent subunits, in the form of a square, with nearest-neighbor interactions. Each subunit has one site for binding of one Ca2+ or one proton, but not both. Binding of either ligand on a subunit induces a conformational change in the subunit that alters its interaction with its two neighbors. The model gives good agreement with experimental binding data. It should prove useful as a starting point in the analysis of steady-state ATPase activity as a function of Ca2+ and H+ concentrations.

Full text

PDF
3978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R., Prendergast F. G. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. Science. 1977 Mar 11;195(4282):996–998. doi: 10.1126/science.841325. [DOI] [PubMed] [Google Scholar]
  2. Carvalho A. P. Binding of cations by microsomes from rabbit skeletal muscle. J Cell Physiol. 1966 Feb;67(1):73–83. doi: 10.1002/jcp.1040670109. [DOI] [PubMed] [Google Scholar]
  3. Chevallier J., Butow R. A. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle. Biochemistry. 1971 Jul 6;10(14):2733–2737. doi: 10.1021/bi00790a012. [DOI] [PubMed] [Google Scholar]
  4. Chiesi M., Inesi G. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles. Biochemistry. 1980 Jun 24;19(13):2912–2918. doi: 10.1021/bi00554a015. [DOI] [PubMed] [Google Scholar]
  5. Chiu V. C., Haynes D. H. High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator. Biophys J. 1977 Apr;18(1):3–22. doi: 10.1016/S0006-3495(77)85592-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coan C. R., Inesi G. Ca2+-dependent effect of ATP on spin-labeled sarcoplasmic reticulum. J Biol Chem. 1977 May 10;252(9):3044–3049. [PubMed] [Google Scholar]
  7. Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Fiehn W., Migala A. Calcium binding to sarcoplasmic membranes. Eur J Biochem. 1971 May 28;20(2):245–248. doi: 10.1111/j.1432-1033.1971.tb01387.x. [DOI] [PubMed] [Google Scholar]
  10. Fukushima M., Aihara Y., Ichiyama A. Immunochemical studies on induction of rat liver mitochondrial serine: pyruvate aminotransferase by glucagon. J Biol Chem. 1978 Feb 25;253(4):1187–1194. [PubMed] [Google Scholar]
  11. HASSELBACH W., MAKINOSE M. UBER DEN MECHANISMUS DES CALCIUMTRANSPORTES DURCH DIE MEMBRANEN DES SARKOPLASMATISCHEN RETICULUMS. Biochem Z. 1963 Oct 14;339:94–111. [PubMed] [Google Scholar]
  12. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  13. Hill T. L. Binding under a molecular "umbrella" as a cooperative statistical mechanical system: tropomyosin-actin-myosin as an example. Biophys Chem. 1981 Sep;14(1):31–44. doi: 10.1016/0301-4622(81)87004-4. [DOI] [PubMed] [Google Scholar]
  14. Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. 3. Potassium ion kinetics and cooperativity (with x=4,6,9). Proc Natl Acad Sci U S A. 1971 Oct;68(10):2488–2492. doi: 10.1073/pnas.68.10.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill T. L., Eisenberg E., Greene L. Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3186–3190. doi: 10.1073/pnas.77.6.3186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ikemoto N., Morgan J. F., Yamada S. Ca2+-controlled conformational states of the Ca2+ transport enzyme of sarcoplasmic reticulum. J Biol Chem. 1978 Nov 25;253(22):8027–8033. [PubMed] [Google Scholar]
  17. Ikemoto N. Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J Biol Chem. 1975 Sep 25;250(18):7219–7224. [PubMed] [Google Scholar]
  18. Inesi G., Kurzmack M., Coan C., Lewis D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Apr 10;255(7):3025–3031. [PubMed] [Google Scholar]
  19. Kalbitzer H. R., Stehlik D., Hasselbach W. The binding of calcium and magnesium to sarcoplasmic reticulum vesicles as studied by manganese electron paramagnetic resonance. Eur J Biochem. 1978 Jan 2;82(1):245–255. doi: 10.1111/j.1432-1033.1978.tb12017.x. [DOI] [PubMed] [Google Scholar]
  20. Meissner G., Conner G. E., Fleischer S. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca 2+ -pump and Ca 2+ -binding proteins. Biochim Biophys Acta. 1973 Mar 16;298(2):246–269. doi: 10.1016/0005-2736(73)90355-6. [DOI] [PubMed] [Google Scholar]
  21. Murphy A. J. Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes. Evidence for structural changes occurring during the calcium transport cycle. J Biol Chem. 1978 Jan 25;253(2):385–389. [PubMed] [Google Scholar]
  22. Szabo A., Karplus M. Analysis of the interaction of organic phosphates with hemoglobin. Biochemistry. 1976 Jun 29;15(13):2869–2877. doi: 10.1021/bi00658a026. [DOI] [PubMed] [Google Scholar]
  23. WYMAN J., Jr LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. Adv Protein Chem. 1964;19:223–286. doi: 10.1016/s0065-3233(08)60190-4. [DOI] [PubMed] [Google Scholar]
  24. Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES