Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jul;79(13):4193–4197. doi: 10.1073/pnas.79.13.4193

Platelets of pseudohypoparathyroid patients: Evidence that distinct receptor-cyclase coupling proteins mediate stimulation and inhibition of adenylate cyclase

Harvey J Motulsky *, Richard J Hughes *, Arnold S Brickman , Zvi Farfel , Henry R Bourne §, Paul A Insel *
PMCID: PMC346604  PMID: 6287473

Abstract

We studied platelets of patients with the genetic disorder pseudohypoparathyroidism (PHP) to test whether the nucleotide-binding proteins mediating stimulation of adenylate cyclase (termed Ns) are identical to those mediating inhibition of cyclase (termed Ni). Functional responses to hormones that work through stimulation of adenylate cyclase are blunted in PHP patients. The erythrocytes of many of these patients (PHP-Ia) have previously been shown to have decreased Ns activity whereas those of other PHP patients (PHP-Ib) have normal Ns activity. We find that this decreased Ns activity (measured by the ability to restore adenylate cyclase activity to membranes prepared from S49 cyc- cells) also occurs in the platelets of PHP-Ia but not of PHP-Ib patients. Platelets from both groups of patients accumulate less cAMP in response to prostacyclin than do platelets from control subjects. In contrast to the decreased Ns function in patients with PHP-Ia, we find that Ni function in platelets is similar in these patients and control subjects in several types of experiments: (i) epinephrine-mediated inhibition of prostacyclin-stimulated cAMP production in intact platelets; (ii) the affinity of platelet α2-adrenergic receptors for epinephrine, as determined by competition for [3H]yohimbine binding; (iii) the decrease in receptor affinity for epinephrine produced by Na+ and GTP; and (iv) the concentration dependence of GTP for decreasing the affinity of these receptors for epinephrine. Because Ni is expressed normally in platelets from patients that are genetically deficient in Ns, we conclude that Ns and Ni are likely to be distinct gene products.

Keywords: α2-adrenergic receptor, prostaglandin I2, GTP binding protein

Full text

PDF
4193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourne H. R., Farfel Z., Brickman A. S. Pseudohypoparathyroidism: an inherited disorder of adenylate cyclase. Adv Cyclic Nucleotide Res. 1981;14:43–49. [PubMed] [Google Scholar]
  2. Bourne H. R., Kaslow H. R., Brickman A. S., Farfel Z. Fibroblast defect in pseudohypoparathyroidism, type I: reduced activity of receptor-cyclase coupling protein. J Clin Endocrinol Metab. 1981 Sep;53(3):636–640. doi: 10.1210/jcem-53-3-636. [DOI] [PubMed] [Google Scholar]
  3. Cooper D. M., Jagus R., Somers R. L., Rodbell M. Cholera toxin modifies diverse GTP-modulated regulatory proteins. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1179–1185. doi: 10.1016/0006-291x(81)91572-2. [DOI] [PubMed] [Google Scholar]
  4. Cooper D. M., Rodbell M. ADP is a potent inhibitor of human platelet plasma membrane adenylate cyclase. Nature. 1979 Nov 29;282(5738):517–518. doi: 10.1038/282517a0. [DOI] [PubMed] [Google Scholar]
  5. Farfel Z., Bourne H. R. Deficient activity of receptor-cyclase coupling protein in platelets of patients with pseudohypoparathyroidism. J Clin Endocrinol Metab. 1980 Nov;51(5):1202–1204. doi: 10.1210/jcem-51-5-1202. [DOI] [PubMed] [Google Scholar]
  6. Farfel Z., Brickman A. S., Kaslow H. R., Brothers V. M., Bourne H. R. Defect of receptor-cyclase coupling protein in psudohypoparathyroidism. N Engl J Med. 1980 Jul 31;303(5):237–242. doi: 10.1056/NEJM198007313030501. [DOI] [PubMed] [Google Scholar]
  7. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffman B. B., Yim S., Tsai B. S., Lefkowitz R. J. Preferential uncoupling by manganese of alpha adrenergic receptor mediated inhibition of adenylate cyclase in human platelets. Biochem Biophys Res Commun. 1981 May 29;100(2):724–731. doi: 10.1016/s0006-291x(81)80235-5. [DOI] [PubMed] [Google Scholar]
  9. Hoffman B. B., Yim S., Tsai B. S., Lefkowitz R. J. Preferential uncoupling by manganese of alpha adrenergic receptor mediated inhibition of adenylate cyclase in human platelets. Biochem Biophys Res Commun. 1981 May 29;100(2):724–731. doi: 10.1016/s0006-291x(81)80235-5. [DOI] [PubMed] [Google Scholar]
  10. Jakobs K. H. Inhibition of adenylate cyclase by hormones and neurotransmitters. Mol Cell Endocrinol. 1979 Dec;16(3):147–156. doi: 10.1016/0303-7207(79)90023-6. [DOI] [PubMed] [Google Scholar]
  11. Jakobs K. H., Lasch P., Minuth M., Aktories K., Schultz G. Uncoupling of alpha-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J Biol Chem. 1982 Mar 25;257(6):2829–2833. [PubMed] [Google Scholar]
  12. Jakobs K. H., Saur W., Schultz G. Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 1978 Jan 1;85(1):167–170. doi: 10.1016/0014-5793(78)81272-1. [DOI] [PubMed] [Google Scholar]
  13. Johnson G. L., Kaslow H. R., Farfel Z., Bourne H. R. Genetic analysis of hormone-sensitive adenylate cyclase. Adv Cyclic Nucleotide Res. 1980;13:1–37. [PubMed] [Google Scholar]
  14. Karliner J. S., Motulsky H. J., Insel P. A. Apparent "down-regulation" of human platelet alpha 2-adrenergic receptors is due to retained agonist. Mol Pharmacol. 1982 Jan;21(1):36–43. [PubMed] [Google Scholar]
  15. Levine M. A., Downs R. W., Jr, Singer M., Marx S. J., Aurbach G. D., Spiegel A. M. Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1319–1324. doi: 10.1016/0006-291x(80)90563-x. [DOI] [PubMed] [Google Scholar]
  16. Limbird L. E. Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor--cyclase coupling. Biochem J. 1981 Apr 1;195(1):1–13. doi: 10.1042/bj1950001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Michel T., Hoffman B. B., Lefkowitz R. J. Differential regulation of the alpha 2-adrenergic receptor by Na+ and guanine nucleotides. Nature. 1980 Dec 25;288(5792):709–711. doi: 10.1038/288709a0. [DOI] [PubMed] [Google Scholar]
  18. Motulsky H. J., Shattil S. J., Insel P. A. Characterization of alpha 2-adrenergic receptors on human platelets using [3H]yohimbine. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1562–1570. doi: 10.1016/s0006-291x(80)80044-1. [DOI] [PubMed] [Google Scholar]
  19. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  20. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  21. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  22. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  23. Schafer A. I., Cooper B., O'Hara D., Handin R. I. Identification of platelet receptors for prostaglandin I2 and D2. J Biol Chem. 1979 Apr 25;254(8):2914–2917. [PubMed] [Google Scholar]
  24. Siegl A. M., Smith J. B., Silver M. J., Nicolaou K. C., Ahern D. Selective binding site for [3H]prostacyclin on platelets. J Clin Invest. 1979 Feb;63(2):215–220. doi: 10.1172/JCI109292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith S. K., Limbird L. E. Solubilization of human platelet alpha-adrenergic receptors: evidence that agonist occupancy of the receptor stabilizes receptor--effector interactions. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4026–4030. doi: 10.1073/pnas.78.7.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spiegel A. M., Downs R. W., Jr Guanine nucleotides: key regulators of hormone receptor-adenylate cyclase interaction. Endocr Rev. 1981 Summer;2(3):275–305. doi: 10.1210/edrv-2-3-275. [DOI] [PubMed] [Google Scholar]
  27. Steer M. L., Wood A. Regulation of human platelet adenylate cyclase by epinephrine, prostaglandin E1, and guanine nucleotides. Evidence for separate guanine nucleotide sites mediating stimulation and inhibition. J Biol Chem. 1979 Nov 10;254(21):10791–10797. [PubMed] [Google Scholar]
  28. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES