Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jul;79(14):4248–4251. doi: 10.1073/pnas.79.14.4248

Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells.

D W Coalson, J O Mecham, P H Stern, R M Hoffman
PMCID: PMC346647  PMID: 6289297

Abstract

Methionine (Met) dependence--i.e., the inability of cultured cells to grow when Met is replaced by its immediate precursor homocysteine (Met-Hcy+ medium)--is a frequent component of the oncogenically transformed phenotype. Normal cells, on the other hand, grow in this medium. There have been reports [Hoffman, R. M. & Erbe, R. W. (1976) Proc. Natl. Acad. Sci. USA 73, 1523-1527; Hoffman, R. M., Jacobsen, S. J. & Erbe, R. W. (1978) Biochem. Biophys. Res. Commun. 82, 228-234] of normal or higher rats of Met biosynthesis in Met-dependent cells and a postulation that Met-dependent cells are deficient in utilization of endogenously synthesized Met as opposed to exogenously supplied Met. To answer the critical question of what biochemical reaction(s) requires preformed Met in Met-dependent cels, we labeled cells with Met-free [35S]Hcy or [35S]Met and determined the levels of Met, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy). We report here experiments that demonstrate that Met-dependent cells synthesize a normal amount of endogenously synthesized Met and are deficient in utilizing this Met for AdoMet synthesis. In contrast, exogenously supplied Met is utilized normally for AdoMet biosynthesis. The ratio of AdoMet to AdoHcy is low in Met-dependent cells growing in Met-Hcy+ medium but is normal in Met+Hcy- medium. We determined that the low AdoMet/AdoHcy ratio probably limits growth of Met-dependent cells in Met-Hcy+ medium.

Full text

PDF
4248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader J. P., Brown N. R., Chiang P. K., Cantoni G. L. 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells. Virology. 1978 Sep;89(2):494–505. doi: 10.1016/0042-6822(78)90191-5. [DOI] [PubMed] [Google Scholar]
  2. Chello P. L., Bertino J. R. Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res. 1973 Aug;33(8):1898–1904. [PubMed] [Google Scholar]
  3. Chiang P. K., Cantoni G. L. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem Pharmacol. 1979 Jun 15;28(12):1897–1902. doi: 10.1016/0006-2952(79)90642-7. [DOI] [PubMed] [Google Scholar]
  4. Guranowski A., Montgomery J. A., Cantoni G. L., Chiang P. K. Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase. Biochemistry. 1981 Jan 6;20(1):110–115. doi: 10.1021/bi00504a019. [DOI] [PubMed] [Google Scholar]
  5. Halpern B. C., Clark B. R., Hardy D. N., Halpern R. M., Smith R. A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1133–1136. doi: 10.1073/pnas.71.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffman D. R., Marion D. W., Cornatzer W. E., Duerre J. A. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. J Biol Chem. 1980 Nov 25;255(22):10822–10827. [PubMed] [Google Scholar]
  7. Hoffman R. M., Erbe R. W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A. 1976 May;73(5):1523–1527. doi: 10.1073/pnas.73.5.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffman R. M., Jacobsen S. J., Erbe R. W. Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun. 1978 May 15;82(1):228–234. doi: 10.1016/0006-291x(78)90600-9. [DOI] [PubMed] [Google Scholar]
  9. Hoffman R. M., Jacobsen S. J., Erbe R. W. Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1313–1317. doi: 10.1073/pnas.76.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffman R. M., Jacobsen S. J. Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7306–7310. doi: 10.1073/pnas.77.12.7306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobsen S. J., Hoffman R. M., Erbe R. W. Regulation of methionine adenosyltransferase in normal diploid and simian virus 40-transformed human fibroblasts. J Natl Cancer Inst. 1980 Dec;65(6):1237–1244. [PubMed] [Google Scholar]
  12. Johnson G. S., Chiang P. K. 1-methylnicotinamide and NAD metabolism in normal and transformed normal rat kidney cells. Arch Biochem Biophys. 1981 Aug;210(1):263–269. doi: 10.1016/0003-9861(81)90188-0. [DOI] [PubMed] [Google Scholar]
  13. Jonas A. J., Schneider J. A. A simple, rapid assay for cysteamine and other thiols. Anal Biochem. 1981 Jul 1;114(2):429–432. doi: 10.1016/0003-2697(81)90507-8. [DOI] [PubMed] [Google Scholar]
  14. Koziorowska J., Pieńkowska K., Tautt J. Dependence on exogenous methionine of rat sarcoma and murine leukemia cells in culture. Arch Immunol Ther Exp (Warsz) 1980;28(5):709–716. [PubMed] [Google Scholar]
  15. Kreis W., Baker A., Ryan V., Bertasso A. Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture. Cancer Res. 1980 Mar;40(3):634–641. [PubMed] [Google Scholar]
  16. Kreis W., Goodenow M. Methionine requirement and replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells. Cancer Res. 1978 Aug;38(8):2259–2262. [PubMed] [Google Scholar]
  17. Kreis W. Tumor therapy by deprivation of L-methionine: rationale and results. Cancer Treat Rep. 1979 Jun;63(6):1069–1072. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Tisdale M. J. Changes in tRNA methyltransferase activity and cellular S-adenosylmethionine content following methionine deprivation. Biochim Biophys Acta. 1980 Sep 19;609(2):296–305. doi: 10.1016/0005-2787(80)90241-5. [DOI] [PubMed] [Google Scholar]
  20. Tisdale M. J. Effect of methionine deprivation on methylation and synthesis of macromolecules. Br J Cancer. 1980 Jul;42(1):121–128. doi: 10.1038/bjc.1980.210. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES