Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jul;79(14):4332–4336. doi: 10.1073/pnas.79.14.4332

Luteolysis-induced changes in phase composition and fluidity of bovine luteal cell membranes.

F Goodsaid-Zalduondo, D A Rintoul, J C Carlson, W Hansel
PMCID: PMC346665  PMID: 6956862

Abstract

X-ray diffraction, fluorescence polarization of trans-parinaric acid, and fluorescence photobleaching recovery of dioctadecyltrimethyneindolecarbocyanine have been used to characterize the phase composition and liquid phase fluidity of bovine luteal cell membranes and membrane lipids for functional corpora lutea collected at midcycle and for regressing corpora lutea collected after treatment with prostaglandin F2 alpha. These results support previous observations of gel phases in microsomal preparations of regressed luteal cells at physiological temperatures and further suggest that the plasma membrane may be the main source of this gel phase. Analysis of the overall lipid composition of the microsomal preparations from these cells indicates a role for sphingomyelin, in the presence of cholesterol, for the generation of a gel phase at physiological temperatures.

Full text

PDF
4332

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Buhr M. M., Carlson J. C., Thompson J. E. A new perspective on the mechanism of corpus luteum regression. Endocrinology. 1979 Dec;105(6):1330–1335. doi: 10.1210/endo-105-6-1330. [DOI] [PubMed] [Google Scholar]
  4. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  5. Jacobson K., Hou Y., Derzko Z., Wojcieszyn J., Organisciak D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry. 1981 Sep 1;20(18):5268–5275. doi: 10.1021/bi00521a027. [DOI] [PubMed] [Google Scholar]
  6. Klausner R. D., Wolf D. E. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980 Dec 23;19(26):6199–6203. doi: 10.1021/bi00567a039. [DOI] [PubMed] [Google Scholar]
  7. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koppel D. E. Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys J. 1979 Nov;28(2):281–291. doi: 10.1016/S0006-3495(79)85176-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lange Y., D'Alessandro J. S., Small D. M. The affinity of cholesterol for phosphatidylcholine and sphingomyelin. Biochim Biophys Acta. 1979 Oct 5;556(3):388–398. doi: 10.1016/0005-2736(79)90127-5. [DOI] [PubMed] [Google Scholar]
  10. Patton S. Correlative relationship of cholesterol and sphingomyelin in cell membranes. J Theor Biol. 1970 Dec;29(3):489–491. doi: 10.1016/0022-5193(70)90111-6. [DOI] [PubMed] [Google Scholar]
  11. Rintoul D. A., Chou S. M., Silbert D. F. Physical characterization of sterol-depleted LM-cell plasma membranes. J Biol Chem. 1979 Oct 25;254(20):10070–10077. [PubMed] [Google Scholar]
  12. Rintoul D. A., Sklar L. A., Simoni R. D. Membrane lipid modification of chinese hamster ovary cells. Thermal properties of membrane phospholipids. J Biol Chem. 1978 Oct 25;253(20):7447–7452. [PubMed] [Google Scholar]
  13. Shechter E., Letellier L., Gulik-Krzywicki G. Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotroph. High-angle x-ray diffraction, freeze-etch electron microscopy and transport studies. Eur J Biochem. 1974 Nov 1;49(1):61–76. doi: 10.1111/j.1432-1033.1974.tb03811.x. [DOI] [PubMed] [Google Scholar]
  14. Sklar L. A., Hudson B. S., Simoni R. D. Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry. 1977 Mar 8;16(5):819–828. doi: 10.1021/bi00624a002. [DOI] [PubMed] [Google Scholar]
  15. Welti R., Rintoul D. A., Goodsaid-Zalduondo F., Felder S., Silbert D. F. Gel phase phospholipid in the plasma membrane of sterol-depleted mouse LM cells. Analysis by fluorescence polarization and x-ray diffraction. J Biol Chem. 1981 Jul 25;256(14):7528–7535. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES