Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Cytotechnology logoLink to Cytotechnology
. 2003 Mar;41(2-3):189–196. doi: 10.1023/A:1024887009081

Prostate epithelial stem cell culture

David L Hudson 1,
PMCID: PMC3466698  PMID: 19002955

Abstract

The prostate gland is the site of the second most common cancer in men in the UK, with 9,280 deaths recorded in 2000. Another common disease of the prostate is benign prostatic hyperplasia and both conditions are believed to arise as a result of changes in the balance between cell proliferation and differentiation. There are three types of prostatic epithelial cell, proliferative basal, secretory luminal, and neuroendocrine. All three are believed to be derived from a common stem cell through differentiation along different pathways but the mechanisms behind these processes is poorly understood. In particular, there has until recently been very little information about prostate stem cell growth and differentiation. This review will discuss ways of distinguishing these prostate cell types using markers, such as keratins. Methods available for the culture of prostate epithelial cells and for the characterisation of stem cells both in monolayer and three-dimensional models are examined.

Keywords: benign prostatic hyperplasia, cancer, differentiation, epithelium, keratins, proliferation, proliferative heterogeneity, prostate, stem cells

Full Text

The Full Text of this article is available as a PDF (291.5 KB).

References

  1. Abrahamsson P. Neuroendocrine differentiation in prostatic carcinoma. The Prostate. 1999;39:135–148. doi: 10.1002/(SICI)1097-0045(19990501)39:2<135::AID-PROS9>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  2. Aumuller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA. Neurogenic origin of human prostate endocrine cells. Urology. 1999;53:1041–8. doi: 10.1016/S0090-4295(98)00631-1. [DOI] [PubMed] [Google Scholar]
  3. Aumuller G, Leonhardt M, Renneberg H, von Rahden B, Bjartell A, Abrahamsson PA. Semiquantative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. The Prostate. 2001;46:108–115. doi: 10.1002/1097-0045(20010201)46:2<108::AID-PROS1014>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  4. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84:2302–6. doi: 10.1073/pnas.84.8.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bayne CW, Ross M, Donnelly F, et al. Selective interactions between prostate fibroblast and epithelial cells in co-culture maintain the BPH phenotype. Urol Int. 1998;61:1–7. doi: 10.1159/000030274. [DOI] [PubMed] [Google Scholar]
  6. Bhatt RI, Hart C, Collins A, Ramani VAC, George NJR, Clarke NW. A novel method for the isolation and evaluation of prostatic stem cells. Prostate Cancer and Prostatic Diseases: BPG Sept 2001 Meeting abstracts. 2002;5:78. [Google Scholar]
  7. Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate. 1996;28:98–106. doi: 10.1002/(SICI)1097-0045(199602)28:2<98::AID-PROS4>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  8. Bonkhoff H, Stein U, Remberger K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol. 1994;25:42–6. doi: 10.1016/0046-8177(94)90169-4. [DOI] [PubMed] [Google Scholar]
  9. Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate. 1994;24:114–8. doi: 10.1002/pros.2990240303. [DOI] [PubMed] [Google Scholar]
  10. Bonkhoff H. Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol. 1996;30:201–5. doi: 10.1159/000474170. [DOI] [PubMed] [Google Scholar]
  11. Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci. 2001;114:3865–72. doi: 10.1242/jcs.114.21.3865. [DOI] [PubMed] [Google Scholar]
  12. Cunha GR, Donjacour AA, Cooke PS, et al. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987;8:338–62. doi: 10.1210/edrv-8-3-338. [DOI] [PubMed] [Google Scholar]
  13. Fong CJ, Sherwood ER, Sutkowski DM, et al. Reconstituted basement membrane promotes morphological and functional differentiation of primary human prostatic epithelial cells. Prostate. 1991;19:221–35. doi: 10.1002/pros.2990190304. [DOI] [PubMed] [Google Scholar]
  14. Fry PM, Hudson DL, O'Hare MJ, Masters JR. Comparison of marker protein expression in benign prostatic hyperplasia in vivo and in vitro. BJU Int. 2000;85:504–13. doi: 10.1046/j.1464-410x.2000.00458.x. [DOI] [PubMed] [Google Scholar]
  15. Hudson DL, Guy AT, Fry PM, O'Hare MJ, Watt FM, Masters JRW. Epithelial differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J.Histochem. Cytochem. 2001;49:271–278. doi: 10.1177/002215540104900214. [DOI] [PubMed] [Google Scholar]
  16. Hudson DL, O'Hare MJ, Watt FM, Masters JRW. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest. 2000;80:1243–1250. doi: 10.1038/labinvest.3780132. [DOI] [PubMed] [Google Scholar]
  17. Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate. 1989;Suppl2:33–50. doi: 10.1002/pros.2990150506. [DOI] [PubMed] [Google Scholar]
  18. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80:83–93. doi: 10.1016/0092-8674(95)90453-0. [DOI] [PubMed] [Google Scholar]
  19. Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73:713–24. doi: 10.1016/0092-8674(93)90251-K. [DOI] [PubMed] [Google Scholar]
  20. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggcason K, Martin GR. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochem. 1982;23:6188–6193. doi: 10.1021/bi00267a025. [DOI] [PubMed] [Google Scholar]
  21. Lang SH, Stark M, Collins A, Paul AB, Stower MJ, Maitland NJ. Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ. 2001;12:631–640. [PubMed] [Google Scholar]
  22. Lechner JF, Babcock MS, Marnell M, Narayan KS & Kaighn ME (1980) Normal human prostate epithelial cell cultures. Methods Cell Biol: 195–225. [DOI] [PubMed]
  23. Liu AY, True LD, LaTray L, et al. Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate. 1999;40:192–9. doi: 10.1002/(SICI)1097-0045(19990801)40:3<192::AID-PROS7>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  24. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  25. Nagle RB, Ahmann FR, McDaniel KM, Paquin ML, Clark VA, Celniker A. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res. 1987;47:281–286. [PubMed] [Google Scholar]
  26. Peehl DM, Stamey TA. Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell Dev Biol. 1986;22:82–90. doi: 10.1007/BF02623537. [DOI] [PubMed] [Google Scholar]
  27. Peehl DM, Wong ST, Stamey TA. Clonal growth characteristics of adult human prostatic epithelial cells. In Vitro Cell Dev Biol. 1988;24:530–6. doi: 10.1007/BF02629087. [DOI] [PubMed] [Google Scholar]
  28. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–20. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  29. Purkis PE, Steel JB, Mackenzie IC, Nathrath WB, Leigh IM, Lane EB. Antibody markers of basal cells in complex epithelia. J Cell Sci. 1990;97(Pt1):39–50. doi: 10.1242/jcs.97.1.39. [DOI] [PubMed] [Google Scholar]
  30. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. [DOI] [PubMed] [Google Scholar]
  31. Richardson GD, Robson CN, Neal DE, Collins AT. AC133: a putative marker of prostate epithelial stem cells. Prostate Cancer and Prostatic Diseases: BPG Sept 2001 Meeting abstracts. 2002;5:77. [Google Scholar]
  32. Robinson EJ, Neal DE, Collins AT. Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate. 1998;37:149–60. doi: 10.1002/(SICI)1097-0045(19981101)37:3<149::AID-PROS4>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  33. Rumpold H, Heinrich E, Untergasser G, et al. Neuroendocrine differentiation of human prostatic primary epithelial cell in vitro. The Prostate. 2002;53:101–108. doi: 10.1002/pros.10129. [DOI] [PubMed] [Google Scholar]
  34. Stasiak PC, Purkis PE, Leigh IM, Lane EB. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol. 1989;92:707–16. doi: 10.1111/1523-1747.ep12721500. [DOI] [PubMed] [Google Scholar]
  35. van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest. 2000;80:1251–8. doi: 10.1038/labinvest.3780133. [DOI] [PubMed] [Google Scholar]
  36. van Leenders GJ, Schalken JA. Stem cell differentiation within the human prostate epithelium: implications for prostate carcinogenesis. BJU int. 2001;88:35–42. doi: 10.1046/j.1464-410X.2001.00117.x. [DOI] [PubMed] [Google Scholar]
  37. Verhagen AP, Ramaekers FC, Aalders TW, Schaafsma HE, Debruyne FM, Schalken JA. Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res. 1992;52:6182–7. [PubMed] [Google Scholar]
  38. Xue Y, Smedts F, Debruyne FMJ, de la Rosette JJ, Schalken JA. Identification of intermediate cell types by keratin expression in the developing prostate. Prostate. 1998;34:292–301. doi: 10.1002/(SICI)1097-0045(19980301)34:4<292::AID-PROS7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  39. Xue Y, Verhofstad A, Lange W, et al. Prostatic neuroendocrine cells have a unique keratin expression pattern and do not express Bcl-2: cell kinetic features of neuroendocrine cells in the human prostate. Am J Pathol. 1997;151:1759–65. [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES