Abstract
The synthetic hexapeptide cyclo(-L-Pro-Gly-)3 is an ionophore that shows interesting conformational changes upon binding metal ions. X-ray crystallographic studies of this peptide show that when it is crystallized from an ethanol/ethyl acetate mixture the ring takes up an asymmetric conformation containing one cis peptide bond. In crystals of a Ca2+ complex, the cation is sandwiched between two peptide molecules that differ markedly in conformation. However, both exhibit threefold symmetric forms, with all six peptide bonds in the molecule occurring in the usual trans conformation. The Ca2+ is octahedrally surrounded by six glycyl carbonyl oxygens from the two peptides at an average distance of 2.26 Å and can easily be released by the disruption of the peptide sandwich. In the magnesium complex, the peptide forms a 1:1 complex with the ion. The Mg2+ is octahedrally coordinated to three glycyl carbonyls and three water oxygens. The average coordination distance between magnesium and the peptide oxygens is 2.03 Å and that between magnesium and water oxygen is 2.11 Å. The two peptide molecules in the asymmetric unit have similar conformations and have approximate threefold symmetry.
Keywords: cyclic hexapeptide, ionophore, octahedral coordination, x-ray crystallography
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chiu Y. Y., Brown L. D., Lipscomb W. N. Crystal and molecular structure of complex between cyclo(L-prolylglycyl)4 and RbSCN. J Am Chem Soc. 1977 Jul 6;99(14):4799–4803. doi: 10.1021/ja00456a043. [DOI] [PubMed] [Google Scholar]
- Dober C. M., Fossel E. T., Blout E. R. Cyclic peptides. 8. 13C and 1H nuclear magnetic resonance evidence for slow cis'-trans' rotation in a cyclic tetrapeptide. J Am Chem Soc. 1974 Jun 12;96(12):4015–4017. doi: 10.1021/ja00819a051. [DOI] [PubMed] [Google Scholar]
- Dobler M., Dunitz J. D., Krajewski J. Structure of the K+ complex with enniatin B, a macrocyclic antibiotic with K+ transport properties. J Mol Biol. 1969 Jun 28;42(3):603–606. doi: 10.1016/0022-2836(69)90249-6. [DOI] [PubMed] [Google Scholar]
- Duax W. L., Hauptman H., Weeks C. M., Norton D. A. Valinomycin crystal structure determination by direct methods. Science. 1972 May 26;176(4037):911–914. doi: 10.1126/science.176.4037.911. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Steinrauf L. K., Braden B. Beauvericin and divalent cations: crystal structure of the barium complex. Biochem Biophys Res Commun. 1975 May 5;64(1):151–156. doi: 10.1016/0006-291x(75)90231-4. [DOI] [PubMed] [Google Scholar]
- Karle I. L. Conformation of the lithium ion complex of antamanide, a cyclic decapeptide and ion carrier, in the crystalline state. J Am Chem Soc. 1974 Jun 12;96(12):4000–4006. doi: 10.1021/ja00819a044. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Karle J. Conformation of cyclo(Gly-L-Pro-L-Pro-Gly-L-Pro-L-Pro)(2)Mg complex crystallized from CH(3)CN solution. Proc Natl Acad Sci U S A. 1981 Feb;78(2):681–685. doi: 10.1073/pnas.78.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L., Karle J., Wieland T., Burgermeister W., Faulstich H., Witkop B. Conformations of the li-antamanide complex and na-[phe, val]antamanide complex in the crystalline state. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1836–1840. doi: 10.1073/pnas.70.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L. The conformation of the sodium complex of a biologically active analog of antamanide in the crystalline state. Biochemistry. 1974 May 7;13(10):2155–2162. doi: 10.1021/bi00707a025. [DOI] [PubMed] [Google Scholar]
- Kartha G., Ambady G., Shanker P. V. Structure and conformation of a cyclic tripeptide. Nature. 1974 Jan 25;247(5438):204–205. doi: 10.1038/247204a0. [DOI] [PubMed] [Google Scholar]
- Kilbourn B. T., Dunitz J. D., Pioda L. A., Simon W. Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport properties. J Mol Biol. 1967 Dec 28;30(3):559–563. doi: 10.1016/0022-2836(67)90370-1. [DOI] [PubMed] [Google Scholar]
- Kopple K. D., Go A., Schamper T. J., Wilcox C. S. Conformation of cyclic peptides. VII. Cyclic hexapeptides containing the D-Phe-L-Pro sequence. J Am Chem Soc. 1973 Sep 5;95(18):6090–6096. doi: 10.1021/ja00799a042. [DOI] [PubMed] [Google Scholar]
- Madison V., Atreyi M., Deber C. M., Blout E. R. Cyclic peptides. IX. Conformations of a synthetic ion-binding cyclic peptide, cyclo-(pro-gly)3, from circular dichroism and 1H and 13C nuclear magnetic resonance. J Am Chem Soc. 1974 Oct 16;96(21):6725–6734. doi: 10.1021/ja00828a031. [DOI] [PubMed] [Google Scholar]
- Madison V., Deber C. M., Blout E. R. Cyclic peptides. 17. Metal and amino acid complexes of cyclo(pro-gly)4 and analogues studied by nuclear magnetic resonance and circular dichroism. J Am Chem Soc. 1977 Jul 6;99(14):4788–4798. doi: 10.1021/ja00456a042. [DOI] [PubMed] [Google Scholar]
- Mueller P., Rudin D. O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun. 1967 Feb 21;26(4):398–404. doi: 10.1016/0006-291x(67)90559-1. [DOI] [PubMed] [Google Scholar]
- Pinkerton M., Steinrauf L. K., Dawkins P. The molecular structure and some transport properties of valinomycin. Biochem Biophys Res Commun. 1969 May 22;35(4):512–518. doi: 10.1016/0006-291x(69)90376-3. [DOI] [PubMed] [Google Scholar]
- Sobell H. M., Jain S. C., Sakore T. D., Nordman C. E. Stereochemistry of actinomycin--DNA binding. Nat New Biol. 1971 Jun 16;231(24):200–205. doi: 10.1038/newbio231200a0. [DOI] [PubMed] [Google Scholar]
- Venkatachalam C. M. Stereochemical studies on cyclic peptides. II. Molecular structure of cyclotriprolyl. Biochim Biophys Acta. 1968 Dec 3;168(3):397–401. doi: 10.1016/0005-2795(68)90172-4. [DOI] [PubMed] [Google Scholar]
