Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(15):4540–4544. doi: 10.1073/pnas.79.15.4540

endo-beta-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins.

J H Elder, S Alexander
PMCID: PMC346710  PMID: 6812050

Abstract

We have detected an endoglycosidase activity produced by Flavobacterium meningosepticum. This enzyme, named endo F, cleaves glycans of both the high-mannose and the complex type linked through asparagine to the protein backbone. The data indicate that cleavage occurs via hydrolysis of the glycosidic bond of the N,N'-diacetylchitobiose core structure adjacent to asparagine, similar to that due to endo H and endo D. Extreme variability was noted in the availability of this cleavage site among N-linked glycoproteins. Glycoproteins of retrovirus, lymphocytic choriomeningitis virus, Pichinde virus, and HLA-A and -B antigens were readily cleaved in the presence of nonionic detergent. Others, such as ovalbumin, fetuin, bromelain, ovomucoid, alpha 1-acid glycoprotein, immunoglobulin G, and influenza virus hemagglutinin became susceptible only after reduction and alkylation or when cleavage was performed in the presence of 1% 2-mercaptoethanol. Endo F should prove useful in the study of glycans and protein backbones as discrete entities and for defining the nature of the glycan-protein interface.

Full text

PDF
4540

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baenziger J. U., Fiete D. Structure of the complex oligosaccharides of fetuin. J Biol Chem. 1979 Feb 10;254(3):789–795. [PubMed] [Google Scholar]
  2. Baenziger J., Kornfeld S., Kochwa S. Structure of the carbohydrate units of IgE immunoglobulin. II. Sequence of the sialic acid-containing glycopeptides. J Biol Chem. 1974 Mar 25;249(6):1897–1903. [PubMed] [Google Scholar]
  3. Buchmeier M. J., Oldstone M. B. Protein structure of lymphocytic choriomeningitis virus: evidence for a cell-associated precursor of the virion glycopeptides. Virology. 1979 Nov;99(1):111–120. doi: 10.1016/0042-6822(79)90042-4. [DOI] [PubMed] [Google Scholar]
  4. Elder J. H., Jensen F. C., Bryant M. L., Lerner R. A. Polymorphism of the major envelope glycoprotein (gp70) of murine C-type viruses: virion associated and differentiation antigens encoded by a multi-gene family. Nature. 1977 May 5;267(5606):23–28. doi: 10.1038/267023a0. [DOI] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Hartley J. W., Rowe W. P. Clonal cells lines from a feral mouse embryo which lack host-range restrictions for murine leukemia viruses. Virology. 1975 May;65(1):128–134. doi: 10.1016/0042-6822(75)90013-6. [DOI] [PubMed] [Google Scholar]
  7. Hubbard S. C., Robbins P. W. Synthesis and processing of protein-linked oligosaccharides in vivo. J Biol Chem. 1979 Jun 10;254(11):4568–4576. [PubMed] [Google Scholar]
  8. Ishihara H., Takahashi N., Oguri S., Tejima S. Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J Biol Chem. 1979 Nov 10;254(21):10715–10719. [PubMed] [Google Scholar]
  9. KING E. O. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol. 1959 Mar;31(3):241–247. doi: 10.1093/ajcp/31.3.241. [DOI] [PubMed] [Google Scholar]
  10. Koide N., Muramatsu T. Endo-beta-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. Purification and properties of the enzyme from Diplococcus pneumoniae. J Biol Chem. 1974 Aug 10;249(15):4897–4904. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Mellis S. J., Baenziger J. U. Separation of neutral oligosaccharides by high-performance liquid chromatography. Anal Biochem. 1981 Jul 1;114(2):276–280. doi: 10.1016/0003-2697(81)90480-2. [DOI] [PubMed] [Google Scholar]
  13. Parham P., Alpert B. N., Orr H. T., Strominger J. L. Carbohydrate moiety of HLA antigens. Antigenic properties and amino acid sequences around the site of glycosylation. J Biol Chem. 1977 Nov 10;252(21):7555–7567. [PubMed] [Google Scholar]
  14. Prieels J. P., Dolmans M., Schindler M., Sharon N. The binding of glycoconjugates to human-milk D-galactosyltransferase. Eur J Biochem. 1976 Jul 15;66(3):579–582. doi: 10.1111/j.1432-1033.1976.tb10584.x. [DOI] [PubMed] [Google Scholar]
  15. Rosner M. R., Grinna L. S., Robbins P. W. Differences in glycosylation patterns of closely related murine leukemia viruses. Proc Natl Acad Sci U S A. 1980 Jan;77(1):67–71. doi: 10.1073/pnas.77.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosner M. R., Tung J. S., Hopkins N., Robbins P. W. Relationship of GIX antigen expression to the glycosylation of murine leukemia virus glycoprotein. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6420–6424. doi: 10.1073/pnas.77.11.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SATAKE M., OKUYAMA T., ISHIHARA K., SCHMID K. THE CARBOHYDRATE-POLYPEPTIDE LINKAGES, THE AMINO ACID SEQUENCES OF THE PEPTIDES ADJACENT TO SOME OF THESE BONDS, AND THE COMPOSITION AND SIZE OF THE CARBOHYDRATE UNITS OF ALPHA-1-ACID GLYCOPROTEIN. Biochem J. 1965 Jun;95:749–757. doi: 10.1042/bj0950749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schindler M., Mirelman D., Schwarz U. Quantitative determination of N-acetylglucosamine residues at the non-reducing ends of peptidoglycan chains by enzymic attachment of [14C]-D-galactose. Eur J Biochem. 1976 Dec;71(1):131–134. doi: 10.1111/j.1432-1033.1976.tb11098.x. [DOI] [PubMed] [Google Scholar]
  19. Shackelford D. A., Lampson L. A., Strominger J. L. Analysis of HLA-DR antigens by using monoclonal antibodies: recognition of conformational differences in biosynthetic intermediates. J Immunol. 1981 Oct;127(4):1403–1410. [PubMed] [Google Scholar]
  20. Shinnick T. M., Lerner R. A., Sutcliffe J. G. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  21. Strand M., August J. T. Structural proteins of oncogenic ribonucleic acid viruses. Interspec II, a new interspecies antigen. J Biol Chem. 1973 Aug 25;248(16):5627–5633. [PubMed] [Google Scholar]
  22. Tai T., Yamashita K., Ogata-Arakawa M., Koide N., Muramatsu T., Iwashita S., Inoue Y., Kobata A. Structural studies of two ovalbumin glycopeptides in relation to the endo-beta-N-acetylglucosaminidase specificity. J Biol Chem. 1975 Nov 10;250(21):8569–8575. [PubMed] [Google Scholar]
  23. Takahashi N., Nishibe H. Some characteristics of a new glycopeptidase acting on aspartylglycosylamine linkages. J Biochem. 1978 Dec;84(6):1467–1473. doi: 10.1093/oxfordjournals.jbchem.a132270. [DOI] [PubMed] [Google Scholar]
  24. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]
  25. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  26. Wylie D. E., Klinman N. R. The murine B cell repertoire responsive to an influenza-infected syngeneic cell line. J Immunol. 1981 Jul;127(1):194–198. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES