Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(15):4770–4774. doi: 10.1073/pnas.79.15.4770

Dimer-size DNA circles in a leukemic cell immortalized with the Epstein-Barr virus.

E Gussander, A Adams
PMCID: PMC346759  PMID: 6289318

Abstract

The intracellular state of the 30 viral genome equivalents of Epstein-Barr virus (EBV) DNA carried in latent form by the CII cell line, established from a chronic lymphocytic leukemia patient, has been partially characterized. The CII line, which has markers confirming its tumor origin, extends the analysis of the intracellular state of EBV DNA to include other, non-Burkitt lymphoid tumor cells. Monomer-size, free, circular EBV genomes, the major intracellular viral DNA species in other EBV-transformed cells, were absent or present in only minor amounts. Instead, EBV DNA sequences were found associated with a circular DNA form twice the size of the 110 x 10(6) Mr EBV genome. Though circular dimers of mtDNA have been found exclusively in human leukemic lymphocytes, the CII line is similar to normal cells in having only monomer-size mtDNA molecules, which can occur either singly or as catenated forms of two or more interlocking 5-micrometer mtDNA circles.

Full text

PDF
4770

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A., Lindahl T. Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1477–1481. doi: 10.1073/pnas.72.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrand J. R., Rymo L., Walsh J. E., Björck E., Lindahl T., Griffin B. E. Molecular cloning of the complete Epstein-Barr virus genome as a set of overlapping restriction endonuclease fragments. Nucleic Acids Res. 1981 Jul 10;9(13):2999–3014. doi: 10.1093/nar/9.13.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogenhagen D., Lowell C., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells. Replication of unicircular dimer molecules. J Mol Biol. 1981 May 5;148(1):77–93. doi: 10.1016/0022-2836(81)90236-9. [DOI] [PubMed] [Google Scholar]
  4. Clayton D. A., Smith C. A., Jordan J. M., Teplitz M., Vinograd J. Occurrence of complex mitochondrial DNA in normal tissues. Nature. 1968 Dec 7;220(5171):976–979. doi: 10.1038/220976a0. [DOI] [PubMed] [Google Scholar]
  5. Clayton D. A., Vinograd J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature. 1967 Nov 18;216(5116):652–657. doi: 10.1038/216652a0. [DOI] [PubMed] [Google Scholar]
  6. Clayton D. A., Vinograd J. Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1077–1084. doi: 10.1073/pnas.62.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Einhorn L., Ernberg I. Induction of EBNA precedes the first cellular S-phase after EBV-infection of human lymphocytes. Int J Cancer. 1978 Feb 15;21(2):157–160. doi: 10.1002/ijc.2910210205. [DOI] [PubMed] [Google Scholar]
  8. Griffin B. E., Björck E., Bjursell G., Lindahl T. Sequence complexity of circular Epstein-Bar virus DNA in transformed cells. J Virol. 1981 Oct;40(1):11–19. doi: 10.1128/jvi.40.1.11-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henderson E., Robinson J., Frank A., Miller G. Epstein-Barr virus: transformation of lymphocytes separated by size or exposed to bromodeoxyuridine and light. Virology. 1977 Oct 1;82(1):196–205. doi: 10.1016/0042-6822(77)90042-3. [DOI] [PubMed] [Google Scholar]
  10. Hudson B., Upholt W. B., Devinny J., Vinograd J. The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc Natl Acad Sci U S A. 1969 Mar;62(3):813–820. doi: 10.1073/pnas.62.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hurley J. N., Fu S. M., Kunkel H. G., McKenna G., Scharff M. D. Lymphoblastoid cell lines from patients with chronic lymphocytic leukemia: identification of tumor origin by idiotypic analysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5706–5710. doi: 10.1073/pnas.75.11.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karande A., Fialkow P. J., Nilsson K., Povey S., Klein G., Najfeld V., Penfold G. Establishment of a lymphoid cell line from leukemic cells of a patient with chronic lymphocytic leukemia. Int J Cancer. 1980 Nov 15;26(5):551–556. doi: 10.1002/ijc.2910260505. [DOI] [PubMed] [Google Scholar]
  13. Klein G., Dombos L. Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome. Int J Cancer. 1973 Mar 15;11(2):327–337. doi: 10.1002/ijc.2910110210. [DOI] [PubMed] [Google Scholar]
  14. Lindahl T., Adams A., Bjursell G., Bornkamm G. W., Kaschka-Dierich C., Jehn U. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol. 1976 Apr 15;102(3):511–530. doi: 10.1016/0022-2836(76)90331-4. [DOI] [PubMed] [Google Scholar]
  15. Lindahl T., Klein G., Reedman B. M., Johansson B., Singh S. Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int J Cancer. 1974 Jun 15;13(6):764–772. doi: 10.1002/ijc.2910130605. [DOI] [PubMed] [Google Scholar]
  16. Menezes J., Jondal M., Leibold W., Dorval G. Epstein-Barr virus interactions with human lymphocyte subpopulations: virus adsorption, kinetics of expression of Epstein-Barr virus-associated nuclear antigen, and lymphocyte transformation. Infect Immun. 1976 Feb;13(2):303–310. doi: 10.1128/iai.13.2.303-310.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Najfeld V., Fialkow P. J., Karande A., Nilsson K., Klein G., Penfold G. Chromosome analyses of lymphoid cell lines derived from patients with chronic lymphocytic leukemia. Int J Cancer. 1980 Nov 15;26(5):543–549. doi: 10.1002/ijc.2910260504. [DOI] [PubMed] [Google Scholar]
  18. Raab-Traub N., Dambaugh T., Kieff E. DNA of Epstein-Barr virus VIII: B95-8, the previous prototype, is an unusual deletion derivative. Cell. 1980 Nov;22(1 Pt 1):257–267. doi: 10.1016/0092-8674(80)90173-7. [DOI] [PubMed] [Google Scholar]
  19. Radloff R., Bauer W., Vinograd J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci U S A. 1967 May;57(5):1514–1521. doi: 10.1073/pnas.57.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reedman B. M., Klein G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer. 1973 May;11(3):499–520. doi: 10.1002/ijc.2910110302. [DOI] [PubMed] [Google Scholar]
  21. Robinson J. Assay for Epstein-Barr virus based on stimulation of DNA synthesis in mixed leukocytes from human umbilical cord blood. J Virol. 1975 May;15(5):1065–1072. doi: 10.1128/jvi.15.5.1065-1072.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinson J., Smith D. Infection of human B lymphocytes with high multiplicities of Epstein-Barr virus: kinetics of EBNA expression, cellular DNA synthesis, and mitosis. Virology. 1981 Mar;109(2):336–343. doi: 10.1016/0042-6822(81)90504-3. [DOI] [PubMed] [Google Scholar]
  23. Siegel P. J., Clough W., Strominger J. L. Sedimentation characteristics of newly synthesized Epstein-Barr viral DNA in superinfected cells. J Virol. 1981 Jun;38(3):880–885. doi: 10.1128/jvi.38.3.880-885.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Skare J., Strominger J. L. Cloning and mapping of BamHi endonuclease fragments of DNA from the transforming B95-8 strain of Epstein-Barr virus. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3860–3864. doi: 10.1073/pnas.77.7.3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sundin O., Varshavsky A. Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell. 1980 Aug;21(1):103–114. doi: 10.1016/0092-8674(80)90118-x. [DOI] [PubMed] [Google Scholar]
  26. Takada K., Osato T. Analysis of the transformation of human lymphocytes by Epstein-Barr virus. I. Sequential occurrence from the virus-determined nuclear antigen synthesis, to blastogenesis, to DNA synthesis. Intervirology. 1979;11(1):30–39. doi: 10.1159/000149009. [DOI] [PubMed] [Google Scholar]
  27. Takada K., Yamamoto K., Osato T. Analysis of the transformation of human lymphocytes by Epstein-Barr virus. II. Abortive response of leukemic cells to the transforming virus. Intervirology. 1980;13(4):223–231. doi: 10.1159/000149129. [DOI] [PubMed] [Google Scholar]
  28. Tanaka A., Nonoyama M. Latent DNA of Epstein-Barr virus: separation from high-molecular-weight cell DNA in a neutral glycerol gradient. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4658–4661. doi: 10.1073/pnas.71.12.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thorley-Lawson D. A., Chess L., Strominger J. L. Suppression of in vitro Epstein-Barr virus infection. A new role for adult human T lymphocytes. J Exp Med. 1977 Aug 1;146(2):495–508. doi: 10.1084/jem.146.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang J. C. Interlocked DNA rings. II. Physicochemical studies. Biopolymers. 1970;9(4):489–502. doi: 10.1002/bip.1970.360090410. [DOI] [PubMed] [Google Scholar]
  31. zur Hausen H. Oncogenic Herpes viruses. Biochim Biophys Acta. 1975 Mar 20;417(1):25–53. doi: 10.1016/0304-419x(75)90007-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES