Abstract
Mechanisms regulating the developmental increase in the activity of adrenal phenylethanolamine-N-methyltransferase (PNMTase), an index of the adrenergic phenotype, were examined. Immunotitration indicated that the increase in catalytic activity in rat adrenal from birth to adulthood was attributable to increased numbers of PNMTase molecules, not enzyme activation. To determine whether the ontogenetic increase in PNMTase protein was associated with elevation of mRNA coding for PNMTase, cell-free translation was performed on total cellular mRNA obtained from adrenals at different ages. Translation in wheat-germ and reticulocyte lysate systems, followed by immunoprecipitation of the PNMTase product, NaDodSO4 gel electrophoresis, and fluorography, showed an 8-fold increase in the proportion of specific PNMTase mRNA relative to total mRNA in rat adrenals from birth to adulthood. Moreover, bovine adrenal medullae exhibited a 100-fold increase in PNMTase mRNA levels between embryonic life and adulthood. Consequently, the ontogenetic increase in adrenal PNMTase appears to be due to a developmental rise in specific mRNA coding for the protein.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baetge E. E., Kaplan B. B., Reis D. J., Joh T. H. Translation of tyrosine hydroxylase from poly(A)-mRNA in pheochromocytoma cells is enhanced by dexamethasone. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1269–1273. doi: 10.1073/pnas.78.2.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benecke B. J., Ben-Ze'ev A., Penman S. The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell. 1978 Aug;14(4):931–939. doi: 10.1016/0092-8674(78)90347-1. [DOI] [PubMed] [Google Scholar]
- Black I. B., Joh T. H., Reis D. J. Accumulation of tyrosine hydroxylase molecules during growth and development of the superior cervical ganglion. Brain Res. 1974 Jul 19;75(1):133–144. doi: 10.1016/0006-8993(74)90775-6. [DOI] [PubMed] [Google Scholar]
- Bohn M. C., Goldstein M., Black I. B. Expression of phenylethanolamine N-methyltransferase in rat sympathetic ganglia and extra-adrenal chromaffin tissue. Dev Biol. 1982 Feb;89(2):299–308. doi: 10.1016/0012-1606(82)90319-0. [DOI] [PubMed] [Google Scholar]
- Bohn M. C., Goldstein M., Black I. B. Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev Biol. 1981 Feb;82(1):1–10. doi: 10.1016/0012-1606(81)90423-1. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Chiappelli F., Haggerty D. F., Lynch M., Popják G. Translation of phenylalanine hydroxylase-specific mRNA in vitro: evidence for pretranslational control by glucocorticoids. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2105–2109. doi: 10.1073/pnas.78.4.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochard P., Goldstein M., Black I. B. Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2986–2990. doi: 10.1073/pnas.75.6.2986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Díaz Borges J. M., Urbina M., Drujan B. D. Some properties of phenylethanolamine-N-methyltransferase of rat brain. Neurochem Res. 1978 Feb;3(1):15–26. doi: 10.1007/BF00964357. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Hunt J. M. Activity of phenethanolamine N-methyl transferase in the adrenal glands of foetal and neonatal rats. Nature. 1967 Apr 8;214(5084):190–190. doi: 10.1038/214190a0. [DOI] [PubMed] [Google Scholar]
- Goldman B. M., Blobel G. Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5066–5070. doi: 10.1073/pnas.75.10.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guyette W. A., Matusik R. J., Rosen J. M. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979 Aug;17(4):1013–1023. doi: 10.1016/0092-8674(79)90340-4. [DOI] [PubMed] [Google Scholar]
- Johnson L. F., Levis R., Abelson H. T., Green H., Penman S. Changes in RNA in relation to growth of the fibroblast. IV. Alterations in theproduction and processing of mRNA and rRNA in resting and growing cells. J Cell Biol. 1976 Dec;71(3):933–938. doi: 10.1083/jcb.71.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreibich G., Sabatini D. D. Selective release of content from microsomal vesicles without membrane disassembly. II. Electrophoretic and immunological characterization of microsomal subfractions. J Cell Biol. 1974 Jun;61(3):789–807. doi: 10.1083/jcb.61.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liu C. P., Slate D. L., Gravel R., Ruddle F. H. Biological detection of specific mRNA molecules by microinjection. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4503–4506. doi: 10.1073/pnas.76.9.4503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liuzzi A., Foppen F. H., Saavedra J. M., Jacobowitz D., Kopin I. J. Effect of NGF and dexamethasone on phenyl-ethanolamine-N-methyl transferase (PNMT) activity in neonatal rat superior cervical ganglia. J Neurochem. 1977 Jun;28(6):1215–1220. doi: 10.1111/j.1471-4159.1977.tb12312.x. [DOI] [PubMed] [Google Scholar]
- Margolis F. L., Roffi J., Jost A. Norepinephrine methylation in fetal rat adrenals. Science. 1966 Oct 14;154(3746):275–276. doi: 10.1126/science.154.3746.275. [DOI] [PubMed] [Google Scholar]
- Martial J. A., Baxter J. D., Goodman H. M., Seeburg P. H. Regulation of growth hormone messenger RNA by thyroid and glucocorticoid hormones. Proc Natl Acad Sci U S A. 1977 May;74(5):1816–1820. doi: 10.1073/pnas.74.5.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore K. E., Phillipson O. T. Effects of dexamethasone on phenylethanolamine N-methyltransferase and adrenaline in the brains and superior cervical ganglia of adult and neonatal rats. J Neurochem. 1975 Sep;25(3):289–294. doi: 10.1111/j.1471-4159.1975.tb06968.x. [DOI] [PubMed] [Google Scholar]
- Nickol J. M., Lee K. L., Kenney F. T. Changes in hepatic levels of tyrosine aminotransferase messenger RNA during induction by hydrocortisone. J Biol Chem. 1978 Jun 10;253(11):4009–4015. [PubMed] [Google Scholar]
- O'Malkey B. W., Woo S. L., Harris S. E., Rosen J. M., Means A. R. Steroid hormone regulation of specific messenger RNA and protein synthesis in eucaryotic cells. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):343–356. doi: 10.1002/jcp.1040850403. [DOI] [PubMed] [Google Scholar]
- Park D. H., Baetge E. E., Kaplan B. B., Albert V. R., Reis D. J., Joh T. H. Different forms of adrenal phenylethanolamine N-methyltransferase: species-specific posttranslational modification. J Neurochem. 1982 Feb;38(2):410–414. doi: 10.1111/j.1471-4159.1982.tb08644.x. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Pohorecky L. A., Wurtman R. J. Adrenocortical control of epinephrine synthesis. Pharmacol Rev. 1971 Mar;23(1):1–35. [PubMed] [Google Scholar]
- Roewekamp W. G., Hofer E., Sekeris C. E. Translation of mRNA from rat-liver polysomes into tyrosine aminotransferase and tryptophan oxygenase in a protein-synthesizing system from wheat germ. Effects of cortisol on the translatable levels of mRNA for these two enzymes. Eur J Biochem. 1976 Nov 1;70(1):259–268. doi: 10.1111/j.1432-1033.1976.tb10977.x. [DOI] [PubMed] [Google Scholar]
- Roman R., Brooker J. D., Seal S. N., Marcus A. Inhibition of the transition of a 40 S ribosome-Met-tRNA-i-Met complex to an 80 S ribosome-Met-tRNA-i-Met- complex by 7-Methylguanosine-5'-phosphate. Nature. 1976 Mar 25;260(5549):359–360. doi: 10.1038/260359a0. [DOI] [PubMed] [Google Scholar]
- Sabban E., Marchesi V., Adesnik M., Sabatini D. D. Erythrocyte membrane protein band 3: its biosynthesis and incorporation into membranes. J Cell Biol. 1981 Dec;91(3 Pt 1):637–646. doi: 10.1083/jcb.91.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swaneck G. E., Nordstrom J. L., Kreuzaler F., Tsai M. J., O'Malley B. W. Effect of estrogen on gene expression in chicken oviduct: evidence for transcriptional control of ovalbumin gene. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1049–1053. doi: 10.1073/pnas.76.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takemoto T., Nagamatsu Y., Oka T. Casein and alpha-lactalbumin messenger RNAs during the development of mouse mammary gland. Isolation, partial purification, and translation in a cell-free system. Dev Biol. 1980 Aug;78(2):247–257. doi: 10.1016/0012-1606(80)90334-6. [DOI] [PubMed] [Google Scholar]
- Teitelman G., Baker H., Joh T. H., Reis D. J. Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. Proc Natl Acad Sci U S A. 1979 Jan;76(1):509–513. doi: 10.1073/pnas.76.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tse T. P., Taylor J. M. Translation of albumin messenger RNA in a cell-free protein-synthesizing system derived from wheat germ. J Biol Chem. 1977 Feb 25;252(4):1272–1278. [PubMed] [Google Scholar]
- Tushinski R. J., Sussman P. M., Yu L. Y., Bancroft F. C. Pregrowth hormone messenger RNA: glucocorticoid induction and identification in rat pituitary cells. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2357–2361. doi: 10.1073/pnas.74.6.2357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verhofstad A. A., Hökfelt T., Goldstein M., Steinbusch H. W., Joosten H. W. Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla: an immunohistochemical study in the rat. Cell Tissue Res. 1979 Aug 3;200(1):1–13. doi: 10.1007/BF00236882. [DOI] [PubMed] [Google Scholar]










