Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(16):4858–4862. doi: 10.1073/pnas.79.16.4858

Amino acid sequence of mouse submaxillary gland renin.

K S Misono, J J Chang, T Inagami
PMCID: PMC346784  PMID: 6812055

Abstract

The complete amino acid sequences of the heavy chain and light chain of mouse submaxillary gland renin have been determined. The heavy chain consists of 288 amino acid residues having a Mr of 31,036 calculated from the sequence. The light chain contains 48 amino acid residues with a Mr of 5,458. The sequence of the heavy chain was determined by automated Edman degradations of the cyanogen bromide peptides and tryptic peptides generated after citraconylation, as well as other peptides generated therefrom. The sequence of the light chain was derived from sequence analyses of the peptides generated by cyanogen bromide cleavage or by digestion with Staphylococcus aureus protease. The sequences in the active site regions in renin containing two catalytically essential aspartyl residues 32 and 215 were found identical with those in pepsin, chymosin, and penicillopepsin. Comparison of the amino acid sequence of renin with that of porcine pepsin indicated a 42% sequence identity of the heavy chain with the amino-terminal and middle regions and a 46% identity of the light chain with the carboxyl-terminal region of the porcine pepsin sequence. Residues identical in renin and pepsin are distributed throughout the length of the molecules, suggesting a similarity in their overall structures.

Full text

PDF
4858

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes T. R., Kidger T., Trauer T., Taylor P. Reclassification of the tardive dyskinesia syndrome. Adv Biochem Psychopharmacol. 1980;24:565–568. [PubMed] [Google Scholar]
  2. Bayliss R. S., Knowles J. R., Wybrandt G. B. An aspartic acid residue at the active site of pepsin. The isolation and sequence of the heptapeptide. Biochem J. 1969 Jun;113(2):377–386. doi: 10.1042/bj1130377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang W. J., Takahashi K. The structure and function of acid proteases. III. Isolation and characterization of the active-site peptides from bovine rennin. J Biochem. 1974 Sep;76(3):467–474. doi: 10.1093/oxfordjournals.jbchem.a130590. [DOI] [PubMed] [Google Scholar]
  4. Chen K. C., Tang J. Amino acid sequence around the epoxide-reactive residues in pepsin. J Biol Chem. 1972 Apr 25;247(8):2566–2574. [PubMed] [Google Scholar]
  5. Cohen S., Taylor J. M., Murakami K., Michelakis A. M., Inagami T. Isolation and characterization of renin-like enzymes from mouse submaxillary glands. Biochemistry. 1972 Nov 7;11(23):4286–4293. doi: 10.1021/bi00773a015. [DOI] [PubMed] [Google Scholar]
  6. Gross F., Lazar J., Orth H. Inhibition of the renin-angiotensinogen reaction by pepstatin. Science. 1972 Feb 11;175(4022):656–656. doi: 10.1126/science.175.4022.656. [DOI] [PubMed] [Google Scholar]
  7. Hartsuck J. A., Tang J. The carboxylate ion in the active center of pepsin. J Biol Chem. 1972 Apr 25;247(8):2575–2580. [PubMed] [Google Scholar]
  8. Hayashi R., Moore S., Stein W. H. Carboxypeptidase from yeast. Large scale preparation and the application to COOH-terminal analysis of peptides and proteins. J Biol Chem. 1973 Apr 10;248(7):2296–2302. [PubMed] [Google Scholar]
  9. Hirose S., Workman R. J., Inagami T. Specific antibody to hog renal renin and its application to the direct radioimmunoassay of renin in various organs. Circ Res. 1979 Aug;45(2):275–281. doi: 10.1161/01.res.45.2.275. [DOI] [PubMed] [Google Scholar]
  10. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hsu I. N., Delbaere L. T., James M. N., Hofmann T. Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 A and sequence homology with porcine pepsin. Nature. 1977 Mar 10;266(5598):140–145. doi: 10.1038/266140a0. [DOI] [PubMed] [Google Scholar]
  12. James M. N., Hsu I. N., Delbaere L. T. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin. Nature. 1977 Jun 30;267(5614):808–813. doi: 10.1038/267808a0. [DOI] [PubMed] [Google Scholar]
  13. Michelakis A. M., Yoshida H., Menzie J., Murakami K., Inagami T. A radioimmunoassay for the direct measurement of renin in mice and its application to submaxillary gland and kidney studies. Endocrinology. 1974 Apr;94(4):1101–1105. doi: 10.1210/endo-94-4-1101. [DOI] [PubMed] [Google Scholar]
  14. Misono K. S., Inagami T. Characterization of the active site of mouse submaxillary gland renin. Biochemistry. 1980 Jun 10;19(12):2616–2622. doi: 10.1021/bi00553a013. [DOI] [PubMed] [Google Scholar]
  15. Okamura T., Clemens D. L., Inagami T. Renin, angiotensins, and angiotensin-converting enzyme in neuroblastoma cells: evidence for intracellular formation of angiotensins. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6940–6943. doi: 10.1073/pnas.78.11.6940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poulsen K., Vuust J., Lykkegaard S., Nielsen A. H., Lund T. Renin is synthesized as a 50,000 dalton single-chain polypeptide in cell-free translation systems. FEBS Lett. 1979 Feb 1;98(1):135–138. doi: 10.1016/0014-5793(79)80169-6. [DOI] [PubMed] [Google Scholar]
  17. Pratt R. E., Dzau V. J., Ouellette A. J. Abundant androgen regulated mRNAs in mouse submandibular gland: cell-free translation of renin precursor mRNA. Nucleic Acids Res. 1981 Jul 24;9(14):3433–3449. doi: 10.1093/nar/9.14.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rajagopalan T. G., Stein W. H., Moore S. The inactivation of pepsin by diazoacetylnorleucine methyl ester. J Biol Chem. 1966 Sep 25;241(18):4295–4297. [PubMed] [Google Scholar]
  19. Sepulveda P., Marciniszyn J., Jr, Liu D., Tang J. Primary structure of porcine pepsin. III. Amino acid sequence of a cyanogen bromide fragment, CB2A, and the complete structure of porcine pepsin. J Biol Chem. 1975 Jul 10;250(13):5082–5088. [PubMed] [Google Scholar]
  20. Sodek J., Hofmann T. Amino acid sequence around the active site aspartic acid in penicillopepsin. Can J Biochem. 1970 Sep;48(9):1014–1016. doi: 10.1139/o70-158. [DOI] [PubMed] [Google Scholar]
  21. Tang J. Specific and irreversible inactivation of pepsin by substrate-like epoxides. J Biol Chem. 1971 Jul 25;246(14):4510–4517. [PubMed] [Google Scholar]
  22. Zimmerman C. L., Appella E., Pisano J. J. Rapid analysis of amino acid phenylthiohydantoins by high-performance liquid chromatography. Anal Biochem. 1977 Feb;77(2):569–573. doi: 10.1016/0003-2697(77)90276-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES