Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(16):4878–4882. doi: 10.1073/pnas.79.16.4878

Perturbations of enzymic uracil excision due to purine damage in DNA.

N J Duker, D E Jensen, D M Hart, D E Fishbein
PMCID: PMC346788  PMID: 6956898

Abstract

Phage PBS-2 DNA, which contains uracil in place of thymine, was selectively damaged and then used as substrate for purified Bacillus subtilis uracil-DNA glycosylase. This enzyme releases uracil from DNA in a limited processive manner. Irradiation by ultraviolet light (greater than 305 nm) in the presence of isopropanol and a free radical photoinitiator introduced covalently bound 8-(2-hydroxy-2-propyl)purines into DNA. Methylation by dimethylsulfate yielded 7-methylguanine. Apurinic sites were produced by gentle heating of methylated DNA. Rates of enzymic release of uracil from DNA varied among these three substrates. The Vmax was markedly decreased for DNA containing 8-(2-hydroxy-2-propyl)purines and apurinic sites but was unaffected by the presence of larger quantities of 7-methylguanine. This suggests that certain types of damaged DNA moieties may decrease the capacity for uracil excision. Therefore, interference with enzymic excision of this potentially mutagenic base may constitute a common mechanism of action of the reaction products of several unrelated DNA damaging agents.

Full text

PDF
4878

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed F. E., Setlow R. B. DNA repair in human fibroblasts treated with a combination of chemicals. Biophys J. 1981 Jul;35(1):17–22. doi: 10.1016/S0006-3495(81)84770-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed F. E., Setlow R. B. DNA repair in xeroderma pigmentosum cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene. Cancer Res. 1979 Feb;39(2 Pt 1):471–479. [PubMed] [Google Scholar]
  3. Behmoaras T., Toulme J. J., Helene C. Specific recognition of apurinic sites in DNA by a tryptophan-containing peptide. Proc Natl Acad Sci U S A. 1981 Feb;78(2):926–930. doi: 10.1073/pnas.78.2.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Ishai R., Green M., Graff E., Elad D., Steinmaus H., Salomon J. Photoalkylation of purines in DNA. Photochem Photobiol. 1973 Mar;17(3):155–167. doi: 10.1111/j.1751-1097.1973.tb06345.x. [DOI] [PubMed] [Google Scholar]
  5. Caradonna S. J., Cheng Y. C. The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase, and DNA polymerase alpha in the metabolism of FUdR in human tumor cells. Mol Pharmacol. 1980 Nov;18(3):513–520. [PubMed] [Google Scholar]
  6. Chang L. M. The distributive nature of enzymatic DNA synthesis. J Mol Biol. 1975 Apr 5;93(2):219–235. doi: 10.1016/0022-2836(75)90129-1. [DOI] [PubMed] [Google Scholar]
  7. Cone R., Duncan J., Hamilton L., Friedberg E. C. Partial purification and characterization of a uracil DNA N-glycosidase from Bacillus subtilis. Biochemistry. 1977 Jul 12;16(14):3194–3201. doi: 10.1021/bi00633a024. [DOI] [PubMed] [Google Scholar]
  8. Drake J. W., Baltz R. H. The biochemistry of mutagenesis. Annu Rev Biochem. 1976;45:11–37. doi: 10.1146/annurev.bi.45.070176.000303. [DOI] [PubMed] [Google Scholar]
  9. Duker N. J., Davies W. A., Hart D. M. Alteration of uracil-DNA glycosylase activity by uracil dimers in DNA. Photochem Photobiol. 1981 Aug;34(2):191–195. [PubMed] [Google Scholar]
  10. Duker N. J., Grant C. L. Alterations in the levels of deoxyuridine triphosphatase, uracil-DNA glycosylase and AP endonuclease during the cell cycle. Exp Cell Res. 1980 Feb;125(2):493–497. doi: 10.1016/0014-4827(80)90145-7. [DOI] [PubMed] [Google Scholar]
  11. Duker N. J., Teebor G. W. Detection of different types of damage in alkylated DNA by means of human corrective endonuclease (correndonuclease). Proc Natl Acad Sci U S A. 1976 Aug;73(8):2629–2633. doi: 10.1073/pnas.73.8.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duncan B. K., Miller J. H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980 Oct 9;287(5782):560–561. doi: 10.1038/287560a0. [DOI] [PubMed] [Google Scholar]
  13. Friedberg E. C., Anderson C. T., Bonura T., Cone R., Radany E. H., Reynolds R. J. Recent developments in the enzymology of excision repair of DNA. Prog Nucleic Acid Res Mol Biol. 1981;26:197–215. doi: 10.1016/s0079-6603(08)60405-5. [DOI] [PubMed] [Google Scholar]
  14. Friedberg E. C., Ganesan A. K., Minton K. N-Glycosidase activity in extracts of Bacillus subtilis and its inhibition after infection with bacteriophage PBS2. J Virol. 1975 Aug;16(2):315–321. doi: 10.1128/jvi.16.2.315-321.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frimer A. A., Havron A., Leonov D., Sperling J., Elad D. Ultraviolet and gamma-ray-induced free-radical reactions of nucleic acid constituents. Selectivity of some reactions for purines. Suppression of the reactivity of pyrimidines. J Am Chem Soc. 1976 Sep 15;98(19):6026–6033. doi: 10.1021/ja00435a041. [DOI] [PubMed] [Google Scholar]
  16. Gruenert D. C., Cleaver J. E. Repair of ultraviolet damage in human cells also exposed to agents that cause strand breaks, crosslinks, monoadducts and alkylations. Chem Biol Interact. 1981 Jan;33(2-3):163–177. doi: 10.1016/0009-2797(81)90038-7. [DOI] [PubMed] [Google Scholar]
  17. Havron A., Sperling J., Elad D. Reactivity and selectivity in light-induced free radical reactions of 2-propanol with purine and pyrimidine mononucleotides and dinucleoside monophosphates. Nucleic Acids Res. 1976 Jul;3(7):1715–1725. doi: 10.1093/nar/3.7.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ingraham H. A., Tseng B. Y., Goulian M. Mechanism for exclusion of 5-fluorouracil from DNA. Cancer Res. 1980 Apr;40(4):998–1001. [PubMed] [Google Scholar]
  19. Jensen D. E., Lotlikar P. D., Magee P. N. The in vitro methylation of DNA by microsomally-activated dimethylnitrosamine and its correlation with formaldehyde production. Carcinogenesis. 1981;2(4):349–354. doi: 10.1093/carcin/2.4.349. [DOI] [PubMed] [Google Scholar]
  20. Jensen D. E., Reed D. J. Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly[dA-dT] including phosphotriester formation. Biochemistry. 1978 Nov 28;17(24):5098–5107. doi: 10.1021/bi00617a005. [DOI] [PubMed] [Google Scholar]
  21. Krokan H., Wittwer C. U. Uracil DNa-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic Acids Res. 1981 Jun 11;9(11):2599–2613. doi: 10.1093/nar/9.11.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuhnlein U., Lee B., Linn S. Human uracil DNA N-glycosidase: studies in normal and repair defective cultured fibroblasts. Nucleic Acids Res. 1978 Jan;5(1):117–125. doi: 10.1093/nar/5.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  24. Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
  25. Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
  26. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  27. Livneh Z., Elad D., Sperling J. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5500–5504. doi: 10.1073/pnas.76.11.5500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McClure W. R., Jovin T. M. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I. J Biol Chem. 1975 Jun 10;250(11):4073–4080. [PubMed] [Google Scholar]
  29. McMillan S., Edenberg H. J., Radany E. H., Friedberg R. C., Friedberg E. C. den V gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities. J Virol. 1981 Oct;40(1):211–223. doi: 10.1128/jvi.40.1.211-223.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moore P. D., Bose K. K., Rabkin S. D., Strauss B. S. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases. Proc Natl Acad Sci U S A. 1981 Jan;78(1):110–114. doi: 10.1073/pnas.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moore P., Strauss B. S. Sites of inhibition of in vitro DNA synthesis in carcinogen- and UV-treated phi X174 DNA. Nature. 1979 Apr 12;278(5705):664–666. doi: 10.1038/278664a0. [DOI] [PubMed] [Google Scholar]
  32. Nakabeppu Y., Sekiguchi M. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA. Proc Natl Acad Sci U S A. 1981 May;78(5):2742–2746. doi: 10.1073/pnas.78.5.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Park S. D., Choi K. H., Hong S. W., Cleaver J. E. Inhibition of excision-repair of ultraviolet damage in human cells by exposure to methyl methanesulfonate. Mutat Res. 1981 Jul;82(2):365–371. doi: 10.1016/0027-5107(81)90165-2. [DOI] [PubMed] [Google Scholar]
  34. Pfohl-Leszkowicz A., Salas C., Fuchs R. P., Dirheimer G. Mechanism of inhibition of enzymatic deoxyribonucleic acid methylation by 2-(acetylamino)fluorene bound to deoxyribonucleic acid. Biochemistry. 1981 May 26;20(11):3020–3024. doi: 10.1021/bi00514a005. [DOI] [PubMed] [Google Scholar]
  35. Pierre J., Laval J. Micrococcus luteus endonucleases for apurinic/apyrimidinic sites in deoxyribonucleic acid. 2. Further studies on the substrate specificity and mechanism of action. Biochemistry. 1980 Oct 28;19(22):5024–5029. doi: 10.1021/bi00563a014. [DOI] [PubMed] [Google Scholar]
  36. Sekiguchi M., Hayakawa H., Makino F., Tanaka K., Okada Y. A human enzyme that liberates uracil from DNA. Biochem Biophys Res Commun. 1976 Nov 22;73(2):293–299. doi: 10.1016/0006-291x(76)90706-3. [DOI] [PubMed] [Google Scholar]
  37. Steinmaus H., Rosenthal I., Elad D. Light- and -ray-induced reactions of purines and purine nucleosides with alcohols. J Org Chem. 1971 Nov 19;36(23):3594–3598. doi: 10.1021/jo00822a029. [DOI] [PubMed] [Google Scholar]
  38. Uhlenhopp E. L., Krasna A. I. Alterations in the structure of deoxyribonucleic acid on chemical methylation. Biochemistry. 1971 Aug 17;10(17):3290–3295. doi: 10.1021/bi00793a020. [DOI] [PubMed] [Google Scholar]
  39. Uyemura D., Bambara R., Lehman I. R. On the processive mechanism of Escherichia coli DNA polymerase I. J Biol Chem. 1975 Nov 25;250(22):8577–8584. [PubMed] [Google Scholar]
  40. Warner H. R., Christensen L. M., Persson M. L. Evidence that the UV endonuclease activity induced by bacteriophage T4 contains both pyrimidine dimer-DNA glycosylase and apyrimidinic/apurinic endonuclease activities in the enzyme molecule. J Virol. 1981 Oct;40(1):204–210. doi: 10.1128/jvi.40.1.204-210.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Warner H. R., Rockstroh P. A. Incorporation and excision of 5-fluorouracil from deoxyribonucleic acid in Escherichia coli. J Bacteriol. 1980 Feb;141(2):680–686. doi: 10.1128/jb.141.2.680-686.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamagishi H. Single strand interruptions in PBS 1 bacteriophage DNA molecule. J Mol Biol. 1968 Aug 14;35(3):623–633. doi: 10.1016/s0022-2836(68)80018-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES