Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(16):4967–4971. doi: 10.1073/pnas.79.16.4967

Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K.

H Hartmann, F Parak, W Steigemann, G A Petsko, D R Ponzi, H Frauenfelder
PMCID: PMC346806  PMID: 6956905

Abstract

The crystal structure of sperm whale metmyoglobin has been determined at 80 K to a resolution of 2A. The overall structure at 80 K is similar to that at 300 K except that the volume is smaller. Refinement of the structure by the method of restrained least squares (current R = 0.175) permits the assignment of isotropic atomic mean-square displacements to all nonhydrogen atoms. Comparison with the values obtained earlier at 250-300 K indicates that the protein at 80 K is more rigid. The average experimentally determined Debye-Waller factor, B, for the protein is 14A2 at 300 K and 5A2 at 80 K. Plots of backbone mean-square displacement vs. temperature show a discontinuity of slope for at least one-third of all residues. This behavior is in good agreement with the temperature dependence of the mean-square displacement of the heme iron as measured by Mössbauer absorption. The magnitudes of the smallest mean-square displacements observed at 80 K indicate that intramolecular motions can be frozen out to a surprisingly large degree. Even at 80 K, however, some atoms in myoglobin still have mean-square displacements greater than 0.1A2, thus providing evidence for conformational substates.

Full text

PDF
4967

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artymiuk P. J., Blake C. C., Grace D. E., Oatley S. J., Phillips D. C., Sternberg M. J. Crystallographic studies of the dynamic properties of lysozyme. Nature. 1979 Aug 16;280(5723):563–568. doi: 10.1038/280563a0. [DOI] [PubMed] [Google Scholar]
  2. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  3. Beece D., Eisenstein L., Frauenfelder H., Good D., Marden M. C., Reinisch L., Reynolds A. H., Sorensen L. B., Yue K. T. Solvent viscosity and protein dynamics. Biochemistry. 1980 Nov 11;19(23):5147–5157. doi: 10.1021/bi00564a001. [DOI] [PubMed] [Google Scholar]
  4. Cooper A. Conformational fluctuation and change in biological macromolecules. Sci Prog. 1980;66(264):473–497. [PubMed] [Google Scholar]
  5. Douzou P., Hoa G. H., Petsko G. A. Protein crystallography at sub-zero temperatures: lysozyme-substrate complexes in cooled mixed solvents. J Mol Biol. 1975 Aug 15;96(3):367–380. doi: 10.1016/0022-2836(75)90166-7. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A. Dynamics of a protein matrix revealed by fluorescence quenching. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3290–3294. doi: 10.1073/pnas.72.9.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frauenfelder H., Petsko G. A. Structural dynamics of liganded myoglobin. Biophys J. 1980 Oct;32(1):465–483. doi: 10.1016/S0006-3495(80)84984-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  9. Gavish B. Modelling the unusual temperature dependence of atomic displacements in proteins by local nonharmonic potentials. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6868–6872. doi: 10.1073/pnas.78.11.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karplus M., McCammon J. A. The internal dynamics of globular proteins. CRC Crit Rev Biochem. 1981;9(4):293–349. doi: 10.3109/10409238109105437. [DOI] [PubMed] [Google Scholar]
  11. Krupyanskii YuF, Parak F., Goldanskii V. I., Mössbauer R. L., Gaubman E. E., Engelmann H., Suzdalev I. P. Investigation of large intramolecular movement within metmyoglobin by Rayleigh scattering of Mössbauer radiation (RSMR). Z Naturforsch C. 1982 Jan-Feb;37(1-2):57–62. doi: 10.1515/znc-1982-1-211. [DOI] [PubMed] [Google Scholar]
  12. Levy R. M., Perahia D., Karplus M. Molecular dynamics of an alpha-helical polypeptide: Temperature dependence and deviation from harmonic behavior. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1346–1350. doi: 10.1073/pnas.79.4.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parak F., Frolov E. N., Mössbauer R. L., Goldanskii V. I. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol. 1981 Feb 5;145(4):825–833. doi: 10.1016/0022-2836(81)90317-x. [DOI] [PubMed] [Google Scholar]
  14. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  15. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES