Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Aug;79(16):5057–5060. doi: 10.1073/pnas.79.16.5057

Diffuse structural alterations in cell membranes of spontaneously hypertensive rats.

M A Devynck, M G Pernollet, A M Nunez, I Aragon, T Montenay-Garestier, C Helene, P Meyer
PMCID: PMC346826  PMID: 6956914

Abstract

Plasma membranes from heart, nerve endings, and liver were compared in 3-week-old male spontaneously hypertensive rats from the Okamoto substrain (SHR) and normotensive Wistar/Kyoto control rats (WKY) [systolic blood pressure 105 +/- 4 and 95 +/- 4 mm Hg, respectively (1 mm Hg = 133 Pa)] according to two criteria: calcium binding at physiological intracellular concentrations and polarization of an embedded fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene. Whatever the tissue of origin, the density of high-affinity calcium binding sites was lower in SHR than in WKY plasma membranes, and the polarization of diphenylhexatriene fluorescence was constantly higher in SHR than in WKY membranes. These membrane abnormalities are similar to those previously described in the erythrocyte membrane from SHR. The presence of diffuse structural alterations in cellular membrane from young spontaneously hypertensive rats when blood pressure is still in the normotensive range suggests a genetic origin. Such inherited abnormalities may by themselves participate in the rise in blood pressure.

Full text

PDF
5057

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bers D. M. Isolation and characterization of cardiac sarcolemma. Biochim Biophys Acta. 1979 Jul 19;555(1):131–146. doi: 10.1016/0005-2736(79)90078-6. [DOI] [PubMed] [Google Scholar]
  2. Boriskina G. M., Gulak P. V., Postnov Y. V. Phosphoinositide content in the erythrocyte membrane of rats with spontaneous and renal hypertension. Experientia. 1978 Jun 15;34(6):744–744. doi: 10.1007/BF01947297. [DOI] [PubMed] [Google Scholar]
  3. De Mendonca M., Grichois M. L., Garay R. P., Sassard J., Ben-Ishay D., Meyer P. Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4283–4286. doi: 10.1073/pnas.77.7.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  5. Emmelot P., Bos C. J., van Hoeven R. P., van Blitterswijk W. J. Isolation of plasma membranes from rat and mouse livers and hepatomas. Methods Enzymol. 1974;31:75–90. doi: 10.1016/0076-6879(74)31008-7. [DOI] [PubMed] [Google Scholar]
  6. Friedman S. M. Evidence for enhanced sodium transport in the tail artery of the spontaneously hypertensive rat. Hypertension. 1979 Nov-Dec;1(6):572–582. doi: 10.1161/01.hyp.1.6.572. [DOI] [PubMed] [Google Scholar]
  7. Friedman S. M., Nakashima M., McIndoe Glass electrode measurement of net Na+ and K+ fluxes in erythrocytes of the spontaneously hypertensive rat. Can J Physiol Pharmacol. 1977 Dec;55(6):1302–1310. doi: 10.1139/y77-175. [DOI] [PubMed] [Google Scholar]
  8. Gordon L. M., Sauerheber R. D., Esgate J. A. Spin label studies on rat liver and heart plasma membranes: effects of temperature, calcium, and lanthanum on membrane fluidity. J Supramol Struct. 1978;9(3):299–326. doi: 10.1002/jss.400090303. [DOI] [PubMed] [Google Scholar]
  9. Haddy F. J., Overbeck H. W. The role of humoral agents in volume expanded hypertension. Life Sci. 1976 Oct 1;19(7):935–947. doi: 10.1016/0024-3205(76)90284-8. [DOI] [PubMed] [Google Scholar]
  10. Hare F., Amiell J., Lussan C. Is an average viscosity tenable in lipid bilayers and membranes? A comparison of semi-empirical equivalent viscosities given by unbound probes: a nitroxide and a fluorophore. Biochim Biophys Acta. 1979 Aug 23;555(3):388–408. doi: 10.1016/0005-2736(79)90393-6. [DOI] [PubMed] [Google Scholar]
  11. Jones A. W. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine, and angiotensin. Circ Res. 1973 Nov;33(5):563–572. doi: 10.1161/01.res.33.5.563. [DOI] [PubMed] [Google Scholar]
  12. Kiselev G., Minenko A., Moritz V., Oehme P. Polyphosphoinositide metabolism in erythrocytes of spontaneously hypertensive rats. Biochem Pharmacol. 1981 Apr 15;30(8):833–837. doi: 10.1016/s0006-2952(81)80003-2. [DOI] [PubMed] [Google Scholar]
  13. Lakowicz J. R., Prendergast F. G., Hogen D. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry. 1979 Feb 6;18(3):508–519. doi: 10.1021/bi00570a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Montenay-Garestier T., Aragon I., Devynck M. A., Meyer P., Helene C. Evidence for structural changes in erythrocyte membranes of spontaneously hypertension rats. A fluorescence polarization study. Biochem Biophys Res Commun. 1981 May 29;100(2):660–665. doi: 10.1016/s0006-291x(81)80226-4. [DOI] [PubMed] [Google Scholar]
  15. Mély-Goubert B., Freedman M. H. Lipid fluidity and membrane protein monitoring using 1,6-diphenyl-1,3,5-hexatriene. Biochim Biophys Acta. 1980 Sep 18;601(2):315–327. doi: 10.1016/0005-2736(80)90536-2. [DOI] [PubMed] [Google Scholar]
  16. Postnov Y. V., Orlov S. N., Gulak P. V., Shevchenko A. S. Evidence of altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats. Clin Sci Mol Med Suppl. 1976 Dec;3:169s–172s. doi: 10.1042/cs051169s. [DOI] [PubMed] [Google Scholar]
  17. Postnov Y. V., Orlov S. N., Pokudin N. I. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch. 1979 Mar 16;379(2):191–195. doi: 10.1007/BF00586947. [DOI] [PubMed] [Google Scholar]
  18. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  19. Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta. 1976 Apr 16;433(1):133–149. doi: 10.1016/0005-2736(76)90183-8. [DOI] [PubMed] [Google Scholar]
  20. Sobue K., Ichida S., Yoshida H., Yamazaki R., Kakiuchi S. Occurrence of a Ca2+- and modulator protein-activatable ATPase in the synaptic plasma membranes of brain. FEBS Lett. 1979 Mar 1;99(1):199–202. doi: 10.1016/0014-5793(79)80278-1. [DOI] [PubMed] [Google Scholar]
  21. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  22. Viret J., Leterrier F. A spin label study of rat brain membranes. Effects of temperature and divalent cations. Biochim Biophys Acta. 1976 Jul 15;436(4):811–824. doi: 10.1016/0005-2736(76)90408-9. [DOI] [PubMed] [Google Scholar]
  23. Wiley J. S., Hutchinson J. S., Mendelsohn F. A., Doyle A. E. Increased sodium permeability of erythrocytes in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1980 Sep-Oct;7(5):527–530. doi: 10.1111/j.1440-1681.1980.tb00104.x. [DOI] [PubMed] [Google Scholar]
  24. de Wardener H. E., MacGregor G. A. Dahl's hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int. 1980 Jul;18(1):1–9. doi: 10.1038/ki.1980.104. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES