Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(17):5122–5126. doi: 10.1073/pnas.79.17.5122

Mechanism of the inhibition of mutagenicity of a benzo[a]pyrene 7,8-diol 9,10-epoxide by riboflavin 5'-phosphate.

A W Wood, J M Sayer, H L Newmark, H Yagi, D P Michaud, D M Jerina, A H Conney
PMCID: PMC346846  PMID: 6813854

Abstract

Riboflavin 5'-phosphate (flavin mononucleotide; FMN) inhibits the mutagenicity of (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]P diol epoxide), the only known ultimate carcinogenic metabolite of benzo[a]pyrene. Coincubation of 10, 25, and 50 nmol of FMN with strain TA100 of histidine-dependent Salmonella typhimurium inhibits the mutagenicity of 0.05 nmol of the diol epoxide by 50, 70, and 90%, respectively. Ribose 5-phosphate and riboflavin show no significant effects at comparable doses. Reaction of B[a]P diol epoxide with FMN in aqueous solution at neutral pH produces only tetraols, with no evidence for covalent adducts. At pH 7 the rate of hydrolysis of B[a]P diol epoxide in dioxane/water, 1:9 (vol/vol), at 25 degrees C is increased more than 10-fold in the presence of 100 muM FMN. Spectrophotometric studies and quantitative rate data for the reaction of the diol epoxide with FMN indicate that a complex is formed between the diol epoxide and the flavin moiety of FMN (Ke = 1,400-3,400 M-1) prior to general acid-catalyzed hydrolysis of the epoxide to tetraols by the phosphate monoanion of FMN. Comparable concentrations of ribose 5-phosphate and riboflavin do not significantly increase the rate of hydrolysis, although evidence for complex formation between riboflavin and the diol epoxide is observed. General acid-catalyzed hydrolysis of bay-region polycyclic hydrocarbon diol epoxides by compounds that have a high affinity for these ultimate carcinogens represents a potentially useful way of inhibiting their carcinogenic activity.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CERLETTI P., IPATA P. Determination of riboflavin and its coenzymes in tissues. Biochem J. 1960 Apr;75:119–124. doi: 10.1042/bj0750119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dixon M. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins. Biochim Biophys Acta. 1971 Mar 2;226(2):269–284. doi: 10.1016/0005-2728(71)90094-6. [DOI] [PubMed] [Google Scholar]
  3. Feldman R. J., Bacon C. R., Cohen J. S. Versatile interactive graphics display system for molecular modelling by computer. Nature. 1973 Jul 13;244(5411):113–115. doi: 10.1038/244113a0. [DOI] [PubMed] [Google Scholar]
  4. Kapitulnik J., Levin W., Conney A. H., Yagi H., Jerina D. M. Benzo[a]pyrene 7,8-dihydrodiol is more carcinogenic than benzo[a]pyrene in newborn mice. Nature. 1977 Mar 24;266(5600):378–380. doi: 10.1038/266378a0. [DOI] [PubMed] [Google Scholar]
  5. Kapitulnik J., Wislocki P. G., Levin W., Yagi H., Jerina D. M., Conney A. H. Tumorigenicity studies with diol-epoxides of benzo(a)pyrene which indicate that (+/-)-trans-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene is an ultimate carcinogen in newborn mice. Cancer Res. 1978 Feb;38(2):354–358. [PubMed] [Google Scholar]
  6. Knott G. D. Mlab--a mathematical modeling tool. Comput Programs Biomed. 1979 Dec;10(3):271–280. doi: 10.1016/0010-468x(79)90075-8. [DOI] [PubMed] [Google Scholar]
  7. LIAO S., DULANEY J. T., WILLIAMS-ASHMAN H. G. Purification and properties of a flavoprotein catalyzing the oxidation of reduced ribosyl nicotinamide. J Biol Chem. 1962 Sep;237:2981–2987. [PubMed] [Google Scholar]
  8. Singer T. P., Edmondson D. E. 8 alpha-substituted flavins of biological importance. FEBS Lett. 1974 May 15;42(1):1–14. doi: 10.1016/0014-5793(74)80266-8. [DOI] [PubMed] [Google Scholar]
  9. Thakker D. R., Yagi H., Akagi H., Koreeda M., Lu A. H., Levin W., Wood A. W., Conney A. H., Jerina D. M. Metabolism of benzo[a]pyrene. VI. Stereoselective metabolism of benzo[a]pyrene and benzo[a]pyrene 7,8-dihydrodiol to diol epoxides. Chem Biol Interact. 1977 Mar;16(3):281–300. doi: 10.1016/0009-2797(77)90108-9. [DOI] [PubMed] [Google Scholar]
  10. Thakker D. R., Yagi H., Lu A. Y., Levin W., Conney A. H. Metabolism of benzo[a]pyrene: conversion of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to highly mutagenic 7,8-diol-9,10-epoxides. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3381–3385. doi: 10.1073/pnas.73.10.3381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WILK M. [On the mechanism of chemical carcinogenesis by 3,4-benzopyrene]. Biochem Z. 1960;333:166–174. [PubMed] [Google Scholar]
  12. Wood A. W., Chang R. L., Levin W., Lehr R. E., Schaefer-Ridder M., Karle J. M., Jerina D. M., Conney A. H. Mutagenicity and cytotoxicity of benz[alpha]anthracene diol epoxides and tetrahydro-epoxides: exceptional activity of the bay region 1,2-epoxides. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2746–2750. doi: 10.1073/pnas.74.7.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wood A. W., Chang R. L., Levin W., Ryan D. E., Thomas P. E., Lehr R. E., Kumar S., Sardella D. J., Boger E., Yagi H. Mutagenicity of the bay-region diol-epoxides and other benzo-ring derivatives of dibenzo(a,h)pyrene and dibenzo(a,i)pyrene. Cancer Res. 1981 Jul;41(7):2589–2597. [PubMed] [Google Scholar]
  14. Wood A. W., Wislocki P. G., Chang R. L., Levin W., Lu A. Y., Yagi J., Hernandez O., Herina D. M., Conney A. H. Mutagenicity and cytotoxicity of benzo(a)pyrene benzo-ring epoxides. Cancer Res. 1976 Sep;36(9 PT1):3358–3366. [PubMed] [Google Scholar]
  15. Wynder E. L., Chan P. C. The possible role of riboflavin deficiency in epithelial neoplasia. II. Effect of skin tumor development. Cancer. 1970 Dec;26(6):1221–1224. doi: 10.1002/1097-0142(197012)26:6<1221::aid-cncr2820260607>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  16. Yagi H., Akagi H., Thakker D. R., Mah H. D., Koreeda M., Jerina D. M. Absolute sterochemistry of the highly mutagenic 7,8-diol 9,10-epoxides derived from the potent carcinogen trans-7,8-dihydroxy-7,8-dihydrobenzol[a]pyrene. J Am Chem Soc. 1977 Mar 30;99(7):2358–2359. doi: 10.1021/ja00449a066. [DOI] [PubMed] [Google Scholar]
  17. Yagi H., Hernandez O., Jerina D. M. Letter: Synthesis of (+/-)-7 beta,8alpha-dihydroxy-9 beta,10beta-epoxy-7,8,-9,10-tetrahydrobenzo(a)pyrene, a potential metabolite of the carcinogen benzo(a)pyrene with stereochemistry related to the antileukemic triptolides. J Am Chem Soc. 1975 Nov 12;97(23):6881–6883. doi: 10.1021/ja00856a057. [DOI] [PubMed] [Google Scholar]
  18. Yagi H., Thakker D. R., Hernandez O., Koreeda M., Jerina D. M. Synthesis and reactions of the highly mutagenic 7,8-diol 9,10-epoxides of the carcinogen benzo[a]pyrene. J Am Chem Soc. 1977 Mar 2;99(5):1604–1611. doi: 10.1021/ja00447a053. [DOI] [PubMed] [Google Scholar]
  19. Yang S. K., McCourt D. W., Roller P. P., Gelboin H. V. Enzymatic conversion of benzo(a)pyrene leading predominantly to the diol-epoxide r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene through a single enantiomer of r-7, t-8-dihydroxy-7,8-dihydrobenzo(a)pyrene. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2594–2598. doi: 10.1073/pnas.73.8.2594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES