Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(17):5147–5151. doi: 10.1073/pnas.79.17.5147

[LeuB24]insulin and [AlaB24]insulin: altered structures and cellular processing of B24-substituted insulin analogs.

R K Assoian, N E Thomas, E T Kaiser, H S Tager
PMCID: PMC346851  PMID: 6752939

Abstract

We have used insulin analogs having leucine or alanine substitutions at positions B24 and B25 to examine the structural basis for insulin binding and insulin metabolism by isolated rat hepatocytes. Apparent receptor binding affinities for the analogs were in the order insulin greater than [LeuB24]insulin greater than [LeuB25]insulin = [AlaB24]insulin. Incubation of the corresponding 125I-labeled peptides with hepatocytes followed by analysis of the cell-associated products showed that [125I]iodoinsulin and [125I]iodo-[LeuB25]insulin were processed to a peptide intermediate which appeared as an ascending shoulder on the peak of cell-associated hormone during gel filtration; similar incubations using [125I]iodo-[LeuB24]insulin or [125I]iodo-[AlaB24]insulin failed to yield detectable amounts of the intermediate. In addition, assessment of the structures of insulin and the three insulin analogs by tyrosine radioiodination showed that [LeuB24]insulin and [AlaB24]insulin maintain similar solution conformations which differ from the conformations taken by insulin and [LeuB25]insulin. We conclude that (a) alterations in side-chain bulk at position B24 result in long-range structural perturbations in the insulin molecule, (b) these structural alterations lead to an altered cellular processing of the two B24 insulin analogs, and (c) the selectivity of this processing arises from events subsequent to ligand-receptor recognition.

Full text

PDF
5147

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assoian R. K., Tager H. S. Peptide intermediates in the cellular metabolism of insulin. J Biol Chem. 1982 Aug 10;257(15):9078–9085. [PubMed] [Google Scholar]
  2. Assoian R. K., Tager H. S. [(125I]IodotyrosylB1]insulin. Semisynthesis, receptor binding, and cell-mediated degradation of a B chain-labeled insulin. J Biol Chem. 1981 Apr 25;256(8):4042–4049. [PubMed] [Google Scholar]
  3. Carpentier J. L., Gorden P., Barazzone P., Freychet P., Le Cam A., Orci L. Intracellular localization of 125I-labeled insulin in hepatocytes from intact rat liver. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2803–2807. doi: 10.1073/pnas.76.6.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. De Meyts P., Van Obberghen E., Roth J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature. 1978 Jun 15;273(5663):504–509. doi: 10.1038/273504a0. [DOI] [PubMed] [Google Scholar]
  6. Dodson E. J., Dodson G. G., Hodgkin D. C., Reynolds C. D. Structural relationships in the two-zinc insulin hexamer. Can J Biochem. 1979 Jun;57(6):469–479. doi: 10.1139/o79-060. [DOI] [PubMed] [Google Scholar]
  7. Freychet P., Roth J., Neville D. M., Jr Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):400–408. doi: 10.1016/0006-291x(71)90767-4. [DOI] [PubMed] [Google Scholar]
  8. Gattner H. G., Danho W., Behn C., Zahn H. The preparation of two mutant forms of human insulin, containing leucine in position B24 or B25, by enzyme-assisted synthesis. Hoppe Seylers Z Physiol Chem. 1980 Jul;361(7):1135–1138. [PubMed] [Google Scholar]
  9. Given B. D., Mako M. E., Tager H. S., Baldwin D., Markese J., Rubenstein A. H., Olefsky J., Kobayashi M., Kolterman O., Poucher R. Diabetes due to secretion of an abnormal insulin. N Engl J Med. 1980 Jan 17;302(3):129–135. doi: 10.1056/NEJM198001173020301. [DOI] [PubMed] [Google Scholar]
  10. Gliemann J., Sonne O. Binding and receptor-mediated degradation of insulin in adipocytes. J Biol Chem. 1978 Nov 10;253(21):7857–7863. [PubMed] [Google Scholar]
  11. Gliemann J., Sonne O., Linde S., Hansen B. Biological potency and binding affinity of monoiodoinsulin with iodine in tyrosine A14 or tyrosine A19. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1183–1190. doi: 10.1016/s0006-291x(79)80032-7. [DOI] [PubMed] [Google Scholar]
  12. Goldman J., Carpenter F. H. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry. 1974 Oct 22;13(22):4566–4574. doi: 10.1021/bi00719a015. [DOI] [PubMed] [Google Scholar]
  13. Gorden P., Carpentier J. L., Freychet P., LeCam A., Orci L. Intracellular translocation of iodine-125-labeled insulin: direct demonstration in isolated hepatocytes. Science. 1978 May 19;200(4343):782–785. doi: 10.1126/science.644321. [DOI] [PubMed] [Google Scholar]
  14. Inouye K., Watanabe K., Tochino Y., Kanaya T., Kobayashi M., Shigeta Y. Semisynthesis and biological properties of the [B24-leucine]-, [B25-leucine[- and [B24-leucine, B25-leucine]-analogues of human insulin. Experientia. 1981;37(8):811–813. doi: 10.1007/BF01985653. [DOI] [PubMed] [Google Scholar]
  15. Inouye K., Watanabe K., Tochino Y., Kobayashi M., Shigeta Y. Semisynthesis and properties of some insulin analogs. Biopolymers. 1981 Sep;20(9):1845–1858. doi: 10.1002/bip.1981.360200909. [DOI] [PubMed] [Google Scholar]
  16. Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. Impaired negative cooperativity of the semisynthetic analogues human [LeuB24]- and [LeuB25]-insulins. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1229–1236. doi: 10.1016/0006-291x(81)91955-0. [DOI] [PubMed] [Google Scholar]
  17. Kwok S. C., Chan S. J., Rubenstein A. H., Poucher R., Steiner D. F. Loss of a restriction endonuclease cleavage site in the gene of a structurally abnormal human insulin. Biochem Biophys Res Commun. 1981 Feb 12;98(3):844–849. doi: 10.1016/0006-291x(81)91188-8. [DOI] [PubMed] [Google Scholar]
  18. Marshall S., Olefsky J. M. Effects of lysosomotropic agents on insulin interactions with adipocytes. Evidence for a lysosomal pathway for insulin processing and degradation. J Biol Chem. 1979 Oct 25;254(20):10153–10160. [PubMed] [Google Scholar]
  19. Olefsky J. M., Green A., Ciaraldi T. P., Saekow M., Rubenstein A. H., Tager H. S. Relationship between negative cooperativity and insulin action. Biochemistry. 1981 Jul 21;20(15):4488–4492. doi: 10.1021/bi00518a038. [DOI] [PubMed] [Google Scholar]
  20. Powers A. C., Solomon S. S., Duckworth W. C. Insulin degradation by mononuclear cells. Diabetes. 1980 Jan;29(1):27–32. doi: 10.2337/diab.29.1.27. [DOI] [PubMed] [Google Scholar]
  21. Tager H., Given B., Baldwin D., Mako M., Markese J., Rubenstein A., Olefsky J., Kobayashi M., Kolterman O., Poucher R. A structurally abnormal insulin causing human diabetes. Nature. 1979 Sep 13;281(5727):122–125. doi: 10.1038/281122a0. [DOI] [PubMed] [Google Scholar]
  22. Tager H., Thomas N., Assoian R., Rubenstein A., Saekow M., Olefsky J., Kaiser E. T. Semisynthesis and biological activity of porcine [LeuB24]insulin and [LeuB25]insulin. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3181–3185. doi: 10.1073/pnas.77.6.3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Terris S., Hofmann C., Steiner D. F. Mode of uptake and degradation of 125I-labelled insulin by isolated hepatocytes and H4 hepatoma cells. Can J Biochem. 1979 Jun;57(6):459–468. doi: 10.1139/o79-059. [DOI] [PubMed] [Google Scholar]
  24. Terris S., Steiner D. F. Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem. 1975 Nov 10;250(21):8389–8398. [PubMed] [Google Scholar]
  25. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  26. Willingham M. C., Pastan I. The receptosome: an intermediate organelle of receptor mediated endocytosis in cultured fibroblasts. Cell. 1980 Aug;21(1):67–77. doi: 10.1016/0092-8674(80)90115-4. [DOI] [PubMed] [Google Scholar]
  27. Wollmer A., Strassburger W., Glatter U., Dodson G. G., McCall M., Gattner H. G., Danho W., Brandenburg D., Rittel W. Two mutant forms of human insulin. Structural consequences of the substitution of invariant B24- or B25-phenylalanine by leucine. Hoppe Seylers Z Physiol Chem. 1981 Jun;362(6):581–591. doi: 10.1515/bchm2.1981.362.1.581. [DOI] [PubMed] [Google Scholar]
  28. Yamada S., Itano H. Phenanthrenequinone as an analytical reagent for arginine and other monosubstituted guanidines. Biochim Biophys Acta. 1966 Dec 28;130(2):538–540. doi: 10.1016/0304-4165(66)90256-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES