Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(17):5171–5174. doi: 10.1073/pnas.79.17.5171

Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes.

M R Alecio, D E Golan, W R Veatch, R R Rando
PMCID: PMC346856  PMID: 6957857

Abstract

N1-Cholesterylcarbamoyl-N8-(4-nitrobenzo-2-oxa-1,3-diazole)-3,6-dioxaoctyl-1,8-diamine (NBD-Chol), a new fluorescent derivative of cholesterol, was incorporated into L-alpha-dimyristoylphosphatidylcholine (Myr2PtdCho)-based liposomes. The lateral mobility of this derivative, as well as that of N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine (NBD-PtdEtn), was measured by fluorescence recovery after photobleaching techniques. In Myr2PtdCho liposomes, the diffusion coefficients (D) of the two probes are the same within experimental error below (D, approximately equal to 2 X 10(-10) cm2 X sec-1) and above (D, approximately equal to 2 X 10(-8) cm2 X sec-1) the main phase transition temperature of the bulk lipid (Tm). There is, however, a distinct difference between the mobilities of the derivatives at concentrations of added cholesterol between 5 and 20 mol % at temperatures below the main phase transition. Under these conditions, the diffusion coefficient of NBD-Chol is approximately twice that of NBD-PtdCho, a result consistent with the idea that cholesterol undergoes a lateral phase separation in these membranes at concentrations less than 20 mol %. At cholesterol concentrations greater than 20 mol % or temperatures above the Tm, the D values of the two probes are identical. The lateral mobility of a cholesterol derivative has thus been monitored directly in cholesterol-containing membranes.

Full text

PDF
5171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Backer J. M., Dawidowicz E. A. Mechanism of cholesterol exchange between phospholipid vesicles. Biochemistry. 1981 Jun 23;20(13):3805–3810. doi: 10.1021/bi00516a021. [DOI] [PubMed] [Google Scholar]
  3. Backer J. M., Dawidowicz E. A. Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase. J Biol Chem. 1981 Jan 25;256(2):586–588. [PubMed] [Google Scholar]
  4. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  5. Estep T. N., Mountcastle D. B., Biltonen R. L., Thompson T. E. Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978 May 16;17(10):1984–1989. doi: 10.1021/bi00603a029. [DOI] [PubMed] [Google Scholar]
  6. Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. I. X-ray diffraction. J Mol Biol. 1976 Jan 25;100(3):345–358. doi: 10.1016/s0022-2836(76)80067-8. [DOI] [PubMed] [Google Scholar]
  7. Golan D. E., Veatch W. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci U S A. 1980 May;77(5):2537–2541. doi: 10.1073/pnas.77.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koppel D. E. Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys J. 1979 Nov;28(2):281–291. doi: 10.1016/S0006-3495(79)85176-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Owicki J. C., McConnell H. M. Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol. Biophys J. 1980 Jun;30(3):383–397. doi: 10.1016/S0006-3495(80)85103-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rando R. R., Bangerter F. W. Threshold effects on the lectin-mediated aggregation of synthetic glycolipid-containing liposomes. J Supramol Struct. 1979;11(3):295–309. doi: 10.1002/jss.400110304. [DOI] [PubMed] [Google Scholar]
  11. Rando R. R., Slama J., Bangerter F. W. Functional incorporation of synthetic glycolipids into cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2510–2513. doi: 10.1073/pnas.77.5.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rubenstein J. L., Smith B. A., McConnell H. M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci U S A. 1979 Jan;76(1):15–18. doi: 10.1073/pnas.76.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shimshick E. J., McConnell H. M. Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973 Jul 17;53(2):446–451. doi: 10.1016/0006-291x(73)90682-7. [DOI] [PubMed] [Google Scholar]
  14. Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith L. M., Rubenstein J. L., Parce J. W., McConnell H. M. Lateral diffusion of M-13 coat protein in mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1980 Dec 9;19(25):5907–5911. doi: 10.1021/bi00566a037. [DOI] [PubMed] [Google Scholar]
  16. Snyder B., Freire E. Compositional domain structure in phosphatidylcholine--cholesterol and sphingomyelin--cholesterol bilayers. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4055–4059. doi: 10.1073/pnas.77.7.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Worcester D. L., Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction. J Mol Biol. 1976 Jan 25;100(3):359–378. doi: 10.1016/s0022-2836(76)80068-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES