Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(17):5197–5199. doi: 10.1073/pnas.79.17.5197

Argininosuccinate synthetase of bovine liver: chemical and physical properties.

S Ratner
PMCID: PMC346862  PMID: 6957859

Abstract

Homogeneous crystalline argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5] prepared from bovine liver according to Rochovansky et al. [Rochovansky, O., Kodowaki, H. & Ratner, S. (1977)J. Biol. Chem. 252, 5287-5294] has been characterized with respect to amino acid composition and other chemical and physical properties. The total residue molecular weights derived from the amino acid analysis are in agreement with values previously obtained by physical means for the catalytically active tetramer, 185,000, and the monomer, 46,500. The enzyme is focused sharply at pH 7.6 as a single protein. Additional properties reported include 2.74 X 10(5) M-1 cm-1 for the molar absorption coefficient, based on the absolute value for protein, and 0.747 ml/g for the chemically based partial specific volume.

Full text

PDF
5197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carritt B., Goldfarb P. S., Hooper M. L., Slack C. Chromosome assignment of a human gene for argininosuccinate synthetase expression in Chinese hamsterxhuman somatic cell hybrids. Exp Cell Res. 1977 Apr;106(1):71–78. doi: 10.1016/0014-4827(77)90242-7. [DOI] [PubMed] [Google Scholar]
  2. Hilger F., Simon J. P., Stalon V. Yeast argininosuccinate synthetase. Purification; structural and kinetic properties. Eur J Biochem. 1979 Feb 15;94(1):153–163. doi: 10.1111/j.1432-1033.1979.tb12882.x. [DOI] [PubMed] [Google Scholar]
  3. Hugli T. E., Moore S. Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. J Biol Chem. 1972 May 10;247(9):2828–2834. [PubMed] [Google Scholar]
  4. Irr J. D., Jacoby L. B. Control of argininosuccinate synthetase by arginine in human lymphoblasts. Somatic Cell Genet. 1978 Jan;4(1):111–124. doi: 10.1007/BF01546496. [DOI] [PubMed] [Google Scholar]
  5. Kimball M. E., Jacoby L. B. Purification and properties of argininosuccinate synthetase from normal and canavanine-resistant human lymphoblasts. Biochemistry. 1980 Feb 19;19(4):705–709. doi: 10.1021/bi00545a015. [DOI] [PubMed] [Google Scholar]
  6. Lockridge O., Spector E. B., Bloom A. D. Argininosuccinate synthetase activity in cultured human lymphocytes. Biochem Genet. 1977 Apr;15(3-4):395–407. doi: 10.1007/BF00484469. [DOI] [PubMed] [Google Scholar]
  7. Mandel B. Characterization of type 1 poliovirus by electrophoretic analysis. Virology. 1971 Jun;44(3):554–568. doi: 10.1016/0042-6822(71)90369-2. [DOI] [PubMed] [Google Scholar]
  8. O'Brien W. E. Isolation and characterization of argininosuccinate synthetase from human liver. Biochemistry. 1979 Nov 27;18(24):5353–5356. doi: 10.1021/bi00591a015. [DOI] [PubMed] [Google Scholar]
  9. PETRACK B., RATNER S. Biosynthesis of urea. VII. Reversible formation of argininosuccinic acid. J Biol Chem. 1958 Dec;233(6):1494–1500. [PubMed] [Google Scholar]
  10. RATNER S., MORELL H., CARVALHO E. Enzymes of arginine metabolism in brain. Arch Biochem Biophys. 1960 Dec;91:280–289. doi: 10.1016/0003-9861(60)90502-6. [DOI] [PubMed] [Google Scholar]
  11. RATNER S., PETRACK B. Biosynthesis of urea. IV. Further studies on condensation in arginine synthesis from citrulline. J Biol Chem. 1953 Jan;200(1):161–174. [PubMed] [Google Scholar]
  12. RATNER S., PETRACK B. The mechanism of arginine synthesis from citrulline in kidney. J Biol Chem. 1953 Jan;200(1):175–185. [PubMed] [Google Scholar]
  13. ROCHOVANSKY O., RATNER S. Biosynthesis of ureas. IX. Further studies on mechanism of argininosuccinate synthetase reaction. J Biol Chem. 1961 Aug;236:2254–2260. [PubMed] [Google Scholar]
  14. Rochovansky O., Kodowaki H., Ratner S. Biosynthesis of urea. Molecular and regulatory properties of crystalline argininosuccinate synthetase. J Biol Chem. 1977 Aug 10;252(15):5287–5294. [PubMed] [Google Scholar]
  15. Rochovansky O., Ratner S. Biosynthesis of urea. XII. Further studies on argininosuccinate synthetase: substrate affinity and mechanism of action. J Biol Chem. 1967 Sep 10;242(17):3839–3849. [PubMed] [Google Scholar]
  16. SCHIMKE R. T. Adaptive characteristics of urea cycle enzymes in the rat. J Biol Chem. 1962 Feb;237:459–468. [PubMed] [Google Scholar]
  17. SCHIMKE R. T. ENZYMES OF ARGININE METABOLISM IN MAMMALIAN CELL CULTURE. I. REPRESSION OF ARGININOSUCCINATE SYNTHETASE AND ARGININOSUCCINASE. J Biol Chem. 1964 Jan;239:136–145. [PubMed] [Google Scholar]
  18. SCHUEGRAF A., RATNER S., WARNER R. C. Free energy changes of the argininosuccinate synthetase reaction and of the hydrolysis of the inner pyrophosphate bond of adenosine triphosphate. J Biol Chem. 1960 Dec;235:3597–3602. [PubMed] [Google Scholar]
  19. Saheki T., Kusumi T., Takada S., Katsunuma T., Katunuma N. Crystallization and some properties of argininosuccinate synthase from rat liver. FEBS Lett. 1975 Oct 15;58(1):314–317. doi: 10.1016/0014-5793(75)80287-0. [DOI] [PubMed] [Google Scholar]
  20. Tedesco T. A., Mellman W. J. Argininosuccinate synthetase activity and citrulline metabolism in cells cultured from a citrullinemic subject. Proc Natl Acad Sci U S A. 1967 Mar;57(3):829–834. doi: 10.1073/pnas.57.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES