Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327

Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B.

N O Petersen, W B McConnaughey, E L Elson
PMCID: PMC346889  PMID: 6957866

Abstract

We describe an approach to exploring cell surface-cytoskeleton interactions through direct measurements of the mechanical resistance of living cells to locally applied forces. These measurements are sensitive to variations in structure across the cell and at various depths below its surface. We find that local cellular deformability depends on the temperature and on the integrity of the cytoskeleton. Cytochalasin B increases the deformability of all regions of the cell except the nucleus.

Full text

PDF
5327

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Heggeness M. H., Wang K., Singer S. J. Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3883–3887. doi: 10.1073/pnas.74.9.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. JULIAN F. J., GOLDMAN D. E. The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol. 1962 Nov;46:297–313. doi: 10.1085/jgp.46.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  5. Lehto V. P., Virtanen I., Kurki P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature. 1978 Mar 9;272(5649):175–177. doi: 10.1038/272175a0. [DOI] [PubMed] [Google Scholar]
  6. Lichtman M. A. Cellular deformability during maturation of the myeloblast. Possible role in marrow egress. N Engl J Med. 1970 Oct 29;283(18):943–948. doi: 10.1056/NEJM197010292831801. [DOI] [PubMed] [Google Scholar]
  7. McConnaughey W. B., Petersen N. O. Cell poker: an apparatus for stress-strain measurements on living cells. Rev Sci Instrum. 1980 May;51(5):575–580. doi: 10.1063/1.1136256. [DOI] [PubMed] [Google Scholar]
  8. Nelson P. G., Peacock J., Minna J. An active electrical response in fibroblasts. J Gen Physiol. 1972 Jul;60(1):58–71. doi: 10.1085/jgp.60.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. RAND R. P., BURTON A. C. MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. Biophys J. 1964 Mar;4:115–135. doi: 10.1016/s0006-3495(64)86773-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Spudich J. A., Lin S. Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc Natl Acad Sci U S A. 1972 Feb;69(2):442–446. doi: 10.1073/pnas.69.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weiss L., Clement K. Studies on cell deformability. Some rheological considerations. Exp Cell Res. 1969 Dec;58(2):379–387. doi: 10.1016/0014-4827(69)90518-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES