Abstract
The stability and tissue distribution of lipid vesicles modified at the surface by the incorporation of either a galactosyl ceramide (GalCer) or a galactosyl cholesterol (GalChol) glycoconjugate have been studied in mice by measuring the release of vesicle-entrapped 111In. Although the tissue distributions of both vesicle types were similar, the GalCer-containing vesicles were markedly less stable than those prepared with GalChol, whether administered orally or by intraperitoneal injection. Physical characterization of the vesicles in vitro suggests that the increased disruption rate for GalCer vesicles in vivo is related to structural instabilities induced by the cerebroside, which can then result in either an increased rate of vesicle uptake by tissues or a greater susceptibility to lysis. These studies demonstrate the importance of the nonpolar anchoring groups in determining the fate of surface-modified vesicles in vivo.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- Bussian R. W., Wriston J. C., Jr Influence of incorporated cerebrosides on the interaction of liposomes with HeLa cells. Biochim Biophys Acta. 1977 Dec 1;471(2):336–336. doi: 10.1016/0005-2736(77)90261-9. [DOI] [PubMed] [Google Scholar]
- Carnie S., Israelachvili J. N., Pailthorpe B. A. Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim Biophys Acta. 1979 Jul 5;554(2):340–357. doi: 10.1016/0005-2736(79)90375-4. [DOI] [PubMed] [Google Scholar]
- Eicke H. F. Surfactants in nonpolar solvents. Aggregation and micellization. Top Curr Chem. 1980;87:85–145. doi: 10.1007/BFb0048489. [DOI] [PubMed] [Google Scholar]
- Gent M. P., Prestegard J. H. Cholesterol-phosphatidylcholine interactions in vesicle systems. Implication of vesicle size and proton magnetic resonance line-width changes. Biochemistry. 1974 Sep 10;13(19):4027–4033. doi: 10.1021/bi00716a033. [DOI] [PubMed] [Google Scholar]
- Harsch M., Walther P., Weder H. G. Targeting of monoclonal antibody-coated liposomes to sheep red blood cells. Biochem Biophys Res Commun. 1981 Dec 15;103(3):1069–1076. doi: 10.1016/0006-291x(81)90917-7. [DOI] [PubMed] [Google Scholar]
- Hwang K. J., Mauk M. R. Fate of lipid vesicles in vivo: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4991–4995. doi: 10.1073/pnas.74.11.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauk M. R., Gamble R. C., Baldeschwieler J. D. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4430–4434. doi: 10.1073/pnas.77.8.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauk M. R., Gamble R. C., Baldeschwieler J. D. Vesicle targeting: timed release and specificity for leukocytes in mice by subcutaneous injection. Science. 1980 Jan 18;207(4428):309–311. doi: 10.1126/science.7350660. [DOI] [PubMed] [Google Scholar]
- Mauk M. R., Gamble R. C. Preparation of lipid vesicles containing high levels of entrapped radioactive cations. Anal Biochem. 1979 Apr 15;94(2):302–307. doi: 10.1016/0003-2697(79)90364-6. [DOI] [PubMed] [Google Scholar]
- Mauk M. R., Gamble R. C. Stability of lipid vesicles in tissues of the mouse: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci U S A. 1979 Feb;76(2):765–769. doi: 10.1073/pnas.76.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuringer L. J., Sears B., Jungalwala F. B. Deuterium NMR studies of cerebroside-phospholipid bilayers. Biochim Biophys Acta. 1979 Dec 12;558(3):325–329. doi: 10.1016/0005-2736(79)90268-2. [DOI] [PubMed] [Google Scholar]
- Petersen N. O., Chan S. I. The effects of the thermal prephase transition and salts on the coagulation and flocculation of phosphatidylcholine bilayer vesicles. Biochim Biophys Acta. 1978 May 4;509(1):111–128. doi: 10.1016/0005-2736(78)90012-3. [DOI] [PubMed] [Google Scholar]
- Poste G., Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1603–1607. doi: 10.1073/pnas.73.5.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Chan S. I. Effect of sonication on the structure of lecithin bilayers. Biochemistry. 1972 Nov 21;11(24):4573–4581. doi: 10.1021/bi00774a024. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Suzuki K. Specific radioactive labeling of terminal n-acetylgalactosamine of glycosphingolipids by the galactose oxidase-sodium borohydride method. J Lipid Res. 1972 Sep;13(5):687–690. [PubMed] [Google Scholar]
- Walter W. V., Hayes R. G. Nuclear magnetic resonance studies of the interaction of water with the polar region of phosphatidylcholine micelles in benzene. Biochim Biophys Acta. 1971 Dec 3;249(2):528–538. doi: 10.1016/0005-2736(71)90128-3. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Magin R. L., Yatvin M. B., Zaharko D. S. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science. 1979 Apr 13;204(4389):188–191. doi: 10.1126/science.432641. [DOI] [PubMed] [Google Scholar]
- Wu P. S., Tin G. W., Baldeschwieler J. D. Phagocytosis of carbohydrate-modified phospholipid vesicles by macrophage. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2033–2037. doi: 10.1073/pnas.78.4.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu P. S., Tin G. W., Baldeschwieler J. D., Shen T. Y., Ponpipom M. M. Effect of surface modification on aggregation of phospholipid vesicles. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6211–6215. doi: 10.1073/pnas.78.10.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]


