Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(18):5499–5502. doi: 10.1073/pnas.79.18.5499

Cell-specific differences in O6-alkylguanine DNA repair activity during continuous exposure to carcinogen.

J A Swenberg, M A Bedell, K C Billings, D R Umbenhauer, A E Pegg
PMCID: PMC346931  PMID: 6957878

Abstract

The activity of the alkyl acceptor protein (AAP) responsible for repair of DNA containing the promutagenic lesion O6-alkylguanine was determined in hepatocytes and nonparenchymal cells (NPC) obtained from livers of control rats and rats exposed to hepatocarcinogens that primarily induce vascular or hepatocellular neoplasms. Basal levels of AAP activity were found to be 4-5 times higher in hepatocytes than in NPC. Exposure to 1,2-dimethylhydrazine or diethylnitrosamine produced a 2- to 3-fold enhancement of this activity in hepatocytes after exposure for as little as 3 days. The enhanced hepatocyte activity persisted throughout a 28-day exposure to 1,2-dimethylhydrazine. In contrast, AAP activity in NPC was decreased during the first week of exposure to 1,2-dimethylhydrazine and subsequently returned to control levels. No enhancement of AAP was apparent in the NPC. These and related data suggest that enhancement of this activity in rat hepatocytes is a response to cell proliferation. In contrast, the data clearly demonstrate that neither increased cell replication nor the presence of O6-alkylguanine was capable of enhancing AAP activity in NPC. Cellular differences in the repair of O6-alkylguanine appear to be a critical mechanism responsible for cell specificity in chemical carcinogenesis by alkylating agents.

Full text

PDF
5499

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. R., Mason M. M., Yerganian G., Weisburger E. K., Weisburger J. H. Induction of tumors of the stomach and esophagus in inbred Chinese hamsters by oral diethylnitrosamine. Proc Soc Exp Biol Med. 1974 May;146(1):291–293. doi: 10.3181/00379727-146-38090. [DOI] [PubMed] [Google Scholar]
  2. Bedell M. A., Lewis J. G., Billings K. C., Swenberg J. A. Cell specificity in hepatocarcinogenesis: preferential accumulation of O6-methylguanine in target cell DNA during continuous exposure to rats to 1,2-dimethylhydrazine. Cancer Res. 1982 Aug;42(8):3079–3083. [PubMed] [Google Scholar]
  3. Bogden J. M., Eastman A., Bresnick E. A system in mouse liver for the repair of O6-methylguanine lesions in methylated DNA. Nucleic Acids Res. 1981 Jul 10;9(13):3089–3103. doi: 10.1093/nar/9.13.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Denlinger R. H., Koestner A., Swenberg J. A. Neoplasms in purebred boxer dogs following long-term administration of N-methyl-N-nitrosourea. Cancer Res. 1978 Jun;38(6):1711–1717. [PubMed] [Google Scholar]
  6. Engelse L. D., Hollander C. F., Misdorp W. A sex-dependent difference in the type of tumours induced by dimethylnitrosamine in the livers of C3Hf mice. Eur J Cancer. 1974 Feb;10(2):129–135. doi: 10.1016/0014-2964(74)90064-4. [DOI] [PubMed] [Google Scholar]
  7. Foote R. S., Mitra S., Pal B. C. Demethylation of O6-methylguanine in a synthetic DNA polymer by an inducible activity in Escherichia coli. Biochem Biophys Res Commun. 1980 Nov 28;97(2):654–659. doi: 10.1016/0006-291x(80)90314-9. [DOI] [PubMed] [Google Scholar]
  8. HERROLD K. M., DUNHAM L. J. Induction of tumors in the Syrian hamster with diethylnitrosamine (N-nitrosodiethylamine). Cancer Res. 1963 Jun;23:773–777. [PubMed] [Google Scholar]
  9. Karran P., Lindahl T., Griffin B. Adaptive response to alkylating agents involves alteration in situ of O6-methylguanine residues in DNA. Nature. 1979 Jul 5;280(5717):76–77. doi: 10.1038/280076a0. [DOI] [PubMed] [Google Scholar]
  10. Kelly M. G., O'Gara R. W., Adamson R. H., Gadekar K., Botkin C. C., Reese W. H., Jr, Kerber W. T. Induction of hepatic cell carcinomas in monkeys with N-nitrosodiethylamine. J Natl Cancer Inst. 1966 Feb;36(2):323–351. [PubMed] [Google Scholar]
  11. Kleihues P., Doerjer G., Swenberg J. A., Hauenstein E., Bücheler J., Cooper H. K. DNA repair as regulatory factor in the organotropy of alkylating carcinogens. Arch Toxicol Suppl. 1979;(2):253–261. doi: 10.1007/978-3-642-67265-1_21. [DOI] [PubMed] [Google Scholar]
  12. Knook D. L., Blansjaar N., Sleyster E. C. Isolation and characterization of Kupffer and endothelial cells from the rat liver. Exp Cell Res. 1977 Oct 15;109(2):317–329. doi: 10.1016/0014-4827(77)90011-8. [DOI] [PubMed] [Google Scholar]
  13. Lewis J. G., Swenberg J. A. Differential repair of O(6)-methylguanine in DNA of rat hepatocytes and nonparenchymal cells. Nature. 1980 Nov 13;288(5787):185–141. doi: 10.1038/288185a0. [DOI] [PubMed] [Google Scholar]
  14. Lewis J. G., Swenberg J. A. Effect of 1,2-dimethylhydrazine and diethylnitrosamine on cell replication and unscheduled DNA synthesis in target and nontarget cell populations in rat liver following chronic administration. Cancer Res. 1982 Jan;42(1):89–92. [PubMed] [Google Scholar]
  15. Lijinsky W., Reuber M. D. Comparative carcinogenesis by some aliphatic nitrosamines in Fischer rats. Cancer Lett. 1981 Dec;14(3):297–302. doi: 10.1016/0304-3835(81)90158-0. [DOI] [PubMed] [Google Scholar]
  16. Lindahl T. DNA repair enzymes. Annu Rev Biochem. 1982;51:61–87. doi: 10.1146/annurev.bi.51.070182.000425. [DOI] [PubMed] [Google Scholar]
  17. Margison G. P., Curtin N. J., Snell K., Craig A. W. Effect of chronic N,N-diethylnitrosamine on the excision of O6-ethylguanine from rat liver DNA. Br J Cancer. 1979 Nov;40(5):809–813. doi: 10.1038/bjc.1979.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Margison G. P., Margison J. M., Montesano R. Accumulation of O6-methylguanine in non-target-tissue deoxyribonucleic acid during chronic administration of dimethylnitrosamine. Biochem J. 1977 Sep 1;165(3):463–468. doi: 10.1042/bj1650463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mehta J. R., Ludlum D. B., Renard A., Verly W. G. Repair of O6-ethylguanine in DNA by a chromatin fraction from rat liver: transfer of the ethyl group to an acceptor protein. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6766–6770. doi: 10.1073/pnas.78.11.6766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montesano R., Brésil H., Planche-Martel G., Margison G. P., Pegg A. E. Effect of chronic treatment of rats with dimethylnitrosamine on the removal of O6-methylguanine from DNA. Cancer Res. 1980 Feb;40(2):452–458. [PubMed] [Google Scholar]
  21. Olsson M., Lindahl T. Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. J Biol Chem. 1980 Nov 25;255(22):10569–10571. [PubMed] [Google Scholar]
  22. Pegg A. E., Balog B. Formation and subsequent excision of O6-ethylguanine from DNA of rat liver following administration of diethylnitrosamine. Cancer Res. 1979 Dec;39(12):5003–5009. [PubMed] [Google Scholar]
  23. Pegg A. E. Dimethylnitrosamine inhibits enzymatic removal of O6-methylguanine from DNA. Nature. 1978 Jul 13;274(5667):182–184. doi: 10.1038/274182a0. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E. Enzymatic removal of O6-methylguanine from DNA by mammalian cell extracts. Biochem Biophys Res Commun. 1978 Sep 14;84(1):166–173. doi: 10.1016/0006-291x(78)90278-4. [DOI] [PubMed] [Google Scholar]
  25. Pegg A. E., Hui G. Formation and subsequent removal of O6-methylguanine from deoxyribonucleic acid in rat liver and kidney after small doses of dimethylnitrosamine. Biochem J. 1978 Sep 1;173(3):739–748. doi: 10.1042/bj1730739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pegg A. E., Perry W., Bennett R. A. Effect of partial hepatectomy on removal of O6-methylguanine from alkylated DNA by rat liver extracts. Biochem J. 1981 Jul 1;197(1):195–201. doi: 10.1042/bj1970195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pegg A. E., Perry W. Stimulation of transfer of methyl groups from O6-methylguanine in DNA to protein by rat liver extracts in response to hepatotoxins. Carcinogenesis. 1981;2(11):1195–1200. doi: 10.1093/carcin/2.11.1195. [DOI] [PubMed] [Google Scholar]
  28. Pegg A. E., Roberfroid M., von Bahr C., Foote R. S., Mitra S., Bresil H., Likhachev A., Montesano R. Removal of O6-methylguanine from DNA by human liver fractions. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5162–5165. doi: 10.1073/pnas.79.17.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Renard A., Verly W. G. A chromatin factor in rat liver which destroys O6-ethylguanine in DNA. FEBS Lett. 1980 May 19;114(1):98–102. doi: 10.1016/0014-5793(80)80868-4. [DOI] [PubMed] [Google Scholar]
  30. Robins P., Cairns J. Quantitation of the adaptive response to alkylating agents. Nature. 1979 Jul 5;280(5717):74–76. doi: 10.1038/280074a0. [DOI] [PubMed] [Google Scholar]
  31. Schendel P. F., Robins P. E. Repair of O6-methylguanine in adapted Escherichia coli. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6017–6020. doi: 10.1073/pnas.75.12.6017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scherer E., Steward A. P., Emmelot P. Kinetics of formation of O6-ethylguanine in, and its removal from liver DNA of rats receiving diethylnitrosamine. Chem Biol Interact. 1977 Oct;19(1):1–11. doi: 10.1016/0009-2797(77)90038-2. [DOI] [PubMed] [Google Scholar]
  33. Scherer E., Timmer A. P., Emmelot P. Formation by diethylnitrosamine and persistence of O4-ethylthymidine in rat liver DNA in vivo. Cancer Lett. 1980 Jul;10(1):1–6. doi: 10.1016/0304-3835(80)90058-0. [DOI] [PubMed] [Google Scholar]
  34. Sedgwick B., Lindahl T. A common mechanism for repair of O6-methylguanine and O6-ethylguanine in DNA. J Mol Biol. 1982 Jan 5;154(1):169–175. doi: 10.1016/0022-2836(82)90424-7. [DOI] [PubMed] [Google Scholar]
  35. Singer B. Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity of mutagenicity. J Toxicol Environ Health. 1977 Jul;2(6):1279–1295. doi: 10.1080/15287397709529530. [DOI] [PubMed] [Google Scholar]
  36. Singer B., Spengler S., Bodell W. J. Tissue-dependent enzyme-mediated repair or removal of O-ethyl pyrimidines and ethyl purines in carcinogen-treated rats. Carcinogenesis. 1981;2(10):1069–1073. doi: 10.1093/carcin/2.10.1069. [DOI] [PubMed] [Google Scholar]
  37. Stumpf R., Margison G. P., Montesano R., Pegg A. E. Formation and loss of alkylated purines from DNA of hamster liver after administration of dimethylnitrosamine. Cancer Res. 1979 Jan;39(1):50–54. [PubMed] [Google Scholar]
  38. Swann P. F., Mace R. Changes in O6-methylguanine disappearance from rat liver DNA during chronic dimethylnitrosamine administration. A possible similarity between the system removing O6-methylguanine from DNA in rat liver and in Escherichia coli adapted to N-methyl-N'-nitro-N-nitrosoguanidine. Chem Biol Interact. 1980 Aug;31(2):239–245. doi: 10.1016/0009-2797(80)90012-5. [DOI] [PubMed] [Google Scholar]
  39. Weisburger J. H., Madison R. M., Ward J. M., Viguera C., Weisburger E. K. Modification of diethylnitrosamine liver carcinogenesis with phenobarbital but not with immunosuppression. J Natl Cancer Inst. 1975 May;54(5):1185–1188. doi: 10.1093/jnci/54.5.1185. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES