Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(18):5567–5571. doi: 10.1073/pnas.79.18.5567

Modulation of the epidermal growth factor receptor by platelet-derived growth factor and choleragen: Effects on mitogenesis

Walker Wharton *,†,, Edward Leof †,§, W J Pledger *,, E J O'Keefe †,¶,ǁ
PMCID: PMC346945  PMID: 6291052

Abstract

The addition of fresh medium supplemented with partially purified platelet-derived growth factor (PDGF) to quiescent density-arrested cultures of BALB/c-3T3 cells decreases the subsequent binding of radiolabeled epidermal growth factor (EGF). The decrease in EGF binding can be observed 1 hr after the addition of PDGF. This effect is maximal in 2-3 hr, and binding remains diminished for at least 6 hr. These effects can be accounted for by a decrease in the number of EGF receptors with no change in receptor affinity. The action of PDGF is concentration dependent, but even at very high concentrations of PDGF the reduction in EGF binding is never more than 50%. Similar decreases in EGF binding are produced by other treatments that render BALB/c-3T3 cells competent, such as the addition of fibroblast growth factor or medium previously exposed to the macrophage-like cell line P388D1. Cholera toxin (choleragen), which alone had no effect on EGF binding, dramatically potentiated the ability of PDGF to down regulate EGF receptors. Two to three hours after the addition of PDGF and choleragen, EGF binding was reduced by 80-90% compared with control values. The ability of PDGF and choleragen together to decrease EGF binding was substantially inhibited by cycloheximide. Autoradiography of [3H]thymidine-labeled cells shows that choleragen potentiates the action of PDGF; lower concentrations of PDGF are required to make cells competent after choleragen treatment. Furthermore, cells treated with PDGF and choleragen no longer require EGF for traverse of G1 phase and initiation of DNA synthesis in defined medium. The reduction in receptor number produced by choleragen and PDGF, which may be due to internalization of the EGF receptor, may mimic the action of EGF and thereby remove the EGF requirement for DNA synthesis.

Keywords: down regulation, cell cycle, cAMP, somatomedin C, insulin

Full text

PDF
5567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonov A., Pruss R. M., Herschman H. R. Epidermal growth factor. Relationship between receptor regulation and mitogenesis in 3T3 cells. J Biol Chem. 1978 Jun 10;253(11):3970–3977. [PubMed] [Google Scholar]
  2. Antoniades H. N., Scher C. D. Radioimmunoassay of a human serum growth factor for Balb/c-3T3 cells: derivation from platelets. Proc Natl Acad Sci U S A. 1977 May;74(5):1973–1977. doi: 10.1073/pnas.74.5.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avivi A., Tramontano D., Ambesi-Impiombato F. S., Schlessinger J. Adenosine 3',5'-monophosphate modulates thyrotropin receptor clustering and thyrotropin activity in culture. Science. 1981 Dec 11;214(4526):1237–1239. doi: 10.1126/science.6272396. [DOI] [PubMed] [Google Scholar]
  4. Carpenter G., Lembach K. J., Morrison M. M., Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975 Jun 10;250(11):4297–4304. [PubMed] [Google Scholar]
  5. Clemmons D. R., Van Wyk J. J., Pledger W. J. Sequential addition of platelet factor and plasma to BALB/c 3T3 fibroblast cultures stimulates somatomedin-C binding early in cell cycle. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6644–6648. doi: 10.1073/pnas.77.11.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Couraud P. O., Delavier-Klutchko C., Durieu-Trautmann O., Strosberg A. D. "Antibodies raised against beta-adrenergic receptors stimulate adenylate cyclase". Biochem Biophys Res Commun. 1981 Apr 30;99(4):1295–1302. doi: 10.1016/0006-291x(81)90760-9. [DOI] [PubMed] [Google Scholar]
  7. Davison P. M., Karasek M. A. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate. J Cell Physiol. 1981 Feb;106(2):253–258. doi: 10.1002/jcp.1041060211. [DOI] [PubMed] [Google Scholar]
  8. Earp H. S., O'Keefe E. J. Epidermal growth factor receptor number decreases during rat liver regeneration. J Clin Invest. 1981 May;67(5):1580–1583. doi: 10.1172/JCI110190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green H. Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell. 1978 Nov;15(3):801–811. doi: 10.1016/0092-8674(78)90265-9. [DOI] [PubMed] [Google Scholar]
  10. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  11. Heldin C. H., Wasteson A., Westermark B. Interaction of platelet-derived growth factor with its fibroblast receptor. Demonstration of ligand degradation and receptor modulation. J Biol Chem. 1982 Apr 25;257(8):4216–4221. [PubMed] [Google Scholar]
  12. Jacobs S., Chang K. J., Cuatrecasas P. Antibodies to purified insulin receptor have insulin-like activity. Science. 1978 Jun 16;200(4347):1283–1284. doi: 10.1126/science.663609. [DOI] [PubMed] [Google Scholar]
  13. O'Keefe E., Cuatrecasas P. Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2500–2504. doi: 10.1073/pnas.71.6.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Keefe E., Hollenberg M. D., Cuatrecasas P. Epidermal growth factor. Characteristics of specific binding in membranes from liver, placenta, and other target tissues. Arch Biochem Biophys. 1974 Oct;164(2):518–526. doi: 10.1016/0003-9861(74)90062-9. [DOI] [PubMed] [Google Scholar]
  15. Pledger W. J., Hart C. A., Locatell K. L., Scher C. D. Platelet-derived growth factor-modulated proteins: constitutive synthesis by a transformed cell line. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4358–4362. doi: 10.1073/pnas.78.7.4358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pledger W. J., Stiles C. D., Antoniades H. N., Scher C. D. An ordered sequence of events is required before BALB/c-3T3 cells become committed to DNA synthesis. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2839–2843. doi: 10.1073/pnas.75.6.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pledger W. J., Stiles C. D., Antoniades H. N., Scher C. D. Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4481–4485. doi: 10.1073/pnas.74.10.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pruss R. M., Herschman H. B. Cholera toxin stimulates division of 3T3 cells. J Cell Physiol. 1979 Mar;98(3):469–474. doi: 10.1002/jcp.1040980305. [DOI] [PubMed] [Google Scholar]
  19. Rozengurt E., Legg A., Strang G., Courtenay-Luck N. Cyclic AMP: a mitogenic signal for Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4392–4396. doi: 10.1073/pnas.78.7.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  21. Schechter Y., Hernaez L., Schlessinger J., Cuatrecasas P. Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature. 1979 Apr 26;278(5707):835–838. doi: 10.1038/278835a0. [DOI] [PubMed] [Google Scholar]
  22. Schreiber A. B., Lax I., Yarden Y., Eshhar Z., Schlessinger J. Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7535–7539. doi: 10.1073/pnas.78.12.7535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stiles C. D., Capone G. T., Scher C. D., Antoniades H. N., Van Wyk J. J., Pledger W. J. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1279–1283. doi: 10.1073/pnas.76.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  25. Wharton W., Gillespie G. Y., Russell S. W., Pledger W. J. Mitogenic activity elaborated by macrophage-like cell lines acts as competence factor(s) for BALB/c 3T3 cells. J Cell Physiol. 1982 Jan;110(1):93–100. doi: 10.1002/jcp.1041100115. [DOI] [PubMed] [Google Scholar]
  26. Wharton W., Leof E. B., Olashaw N., Earp H. S., Pledger W. J. Increases in cyclic AMP potentiate competence formation in BALB/c-3T3 cells. J Cell Physiol. 1982 May;111(2):201–206. doi: 10.1002/jcp.1041110212. [DOI] [PubMed] [Google Scholar]
  27. Wrann M., Fox C. F., Ross R. Modulation of epidermal growth factor receptors on 3T3 cells by platelet-derived growth factor. Science. 1980 Dec 19;210(4476):1363–1365. doi: 10.1126/science.6254158. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES