Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(18):5693–5697. doi: 10.1073/pnas.79.18.5693

Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits.

T Kita, M S Brown, D W Bilheimer, J L Goldstein
PMCID: PMC346971  PMID: 6957885

Abstract

Rabbit livers express two genetically distinct receptors for plasma lipoproteins: (i) the low density lipoprotein (LDL) receptor and (ii) the chylomicron remnant receptor. In homozygous Watanabe-heritable hyperlipidemic (WHHL) rabbits, an animal model for human familial hypercholesterolemia, LDL receptors are genetically deficient, but chylomicron remnant receptors are normal. Hence, WHHL rabbits clear LDL from the circulation at an abnormally slow rate, but they clear chylomicron remnants at a normal rate. The current studies show that WHHL rabbits clear 125I-labeled very low density lipoprotein (VLDL) and its metabolic product, intermediate density lipoprotein (IDL), from plasma at a markedly decreased rate. The impaired clearance is due to a profound decrease in the rate of uptake of 125I-labeled VLDL and 125I-labeled IDL by the liver. Because of its rapid clearance in normal rabbits, only a fraction of the 125I-labeled apoprotein B component of VLDL is converted to LDL. In WHHL rabbits, the impaired clearance of VLDL leads to a markedly increased conversion of 125I-labeled apoprotein B from VLDL to LDL. These results indicate that: (i) in rabbits, the LDL receptor mediates the rapid removal of VLDL and IDL from plasma, and (ii), a deficiency of LDL receptors leads to an enhanced conversion of VLDL to LDL. The combination of overproduction and impaired plasma clearance of LDL, both resulting from a single gene mutation in the LDL receptor, leads to a massive increase of plasma LDL levels in homozygous WHHL rabbits.

Full text

PDF
5693

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu S. K., Brown M. S., Ho Y. K., Havel R. J., Goldstein J. L. Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7545–7549. doi: 10.1073/pnas.78.12.7545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  3. Bilheimer D. W., Stone N. J., Grundy S. M. Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. J Clin Invest. 1979 Aug;64(2):524–533. doi: 10.1172/JCI109490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilheimer D. W., Watanabe Y., Kita T. Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1982 May;79(10):3305–3309. doi: 10.1073/pnas.79.10.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown M. S., Kovanen P. T., Goldstein J. L. Regulation of plasma cholesterol by lipoprotein receptors. Science. 1981 May 8;212(4495):628–635. doi: 10.1126/science.6261329. [DOI] [PubMed] [Google Scholar]
  6. Ghiselli G. Evidence that two synthetic pathways contribute to the apolipoprotein B pool of the low density lipoprotein fraction of rabbit plasma. Biochim Biophys Acta. 1982 May 13;711(2):311–315. doi: 10.1016/0005-2760(82)90040-6. [DOI] [PubMed] [Google Scholar]
  7. Goldstein J. L., Brown M. S. The LDL receptor defect in familial hypercholesterolemia. Implications for pathogenesis and therapy. Med Clin North Am. 1982 Mar;66(2):335–362. doi: 10.1016/s0025-7125(16)31424-9. [DOI] [PubMed] [Google Scholar]
  8. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holmquist L., Carlson K., Carlson L. A. Comparison between the use of isopropanol and tetramethylurea for the solubilisation and quantitation of human serum very low density apolipoproteins. Anal Biochem. 1978 Aug 1;88(2):457–460. doi: 10.1016/0003-2697(78)90444-x. [DOI] [PubMed] [Google Scholar]
  10. Kita T., Brown M. S., Watanabe Y., Goldstein J. L. Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2268–2272. doi: 10.1073/pnas.78.4.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kita T., Goldstein J. L., Brown M. S., Watanabe Y., Hornick C. A., Havel R. J. Hepatic uptake of chylomicron remnants in WHHL rabbits: a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3623–3627. doi: 10.1073/pnas.79.11.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kovanen P. T., Brown M. S., Basu S. K., Bilheimer D. W., Goldstein J. L. Saturation and suppression of hepatic lipoprotein receptors: a mechanism for the hypercholesterolemia of cholesterol-fed rabbits. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1396–1400. doi: 10.1073/pnas.78.3.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laskey R. A. The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol. 1980;65(1):363–371. doi: 10.1016/s0076-6879(80)65047-2. [DOI] [PubMed] [Google Scholar]
  14. Noble R. P. Electrophoretic separation of plasma lipoproteins in agarose gel. J Lipid Res. 1968 Nov;9(6):693–700. [PubMed] [Google Scholar]
  15. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  16. Soutar A. K., Myant N. B., Thompson G. R. The metabolism of very low density and intermediate density lipoproteins in patients with familial hypercholesterolaemia. Atherosclerosis. 1982 Jun;43(2-3):217–231. doi: 10.1016/0021-9150(82)90024-7. [DOI] [PubMed] [Google Scholar]
  17. Tanzawa K., Shimada Y., Kuroda M., Tsujita Y., Arai M., Watanabe H. WHHL-rabbit: a low density lipoprotein receptor-deficient animal model for familial hypercholesterolemia. FEBS Lett. 1980 Aug 25;118(1):81–84. doi: 10.1016/0014-5793(80)81223-3. [DOI] [PubMed] [Google Scholar]
  18. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis. 1980 Jun;36(2):261–268. doi: 10.1016/0021-9150(80)90234-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES