Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Sep;79(18):5742–5745. doi: 10.1073/pnas.79.18.5742

Carbon monoxide binding kinetics in "capped" porphyrin compounds.

E J Rose, P N Venkatasubramanian, J C Swartz, R D Jones, F Basolo, B M Hoffman
PMCID: PMC346982  PMID: 6957890

Abstract

The rate constants for CO binding to the five-coordinate ferrous iron complexes of 5,10,15,20-[pyromellitoyl(tetrakis-o-oxyoxyphenyl)]porphyrin and 5,10,15,20-[pyromellitoyl(tetrakis-o-oxypropoxyphenyl)]porphyrin have been measured and compared with the corresponding rate constants for other hemes and hemoproteins. The second-order rate constant is independent of cap size and is comparable to that of high-affinity state hemoglobin (k5 approximately 4 X 10(6) M-1s-1). Therefore, these capped porphyrins provide no steric hindrance to CO binding. In addition, a kinetic scheme involving an unusual seven-coordinate porphyrin species is described.

Full text

PDF
5742

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbot E. H., Rafson P. A. Letter: Enhancement of ligand binding by iron (III) deuteroporphyrin (IX) dimethyl ester via interaction with 1,10-phenanthroline at a site remote from the metal ion. J Am Chem Soc. 1974 Nov 13;96(23):7378–7379. doi: 10.1021/ja00830a048. [DOI] [PubMed] [Google Scholar]
  2. Busch D. H., Zimmer L. L., Grzybowski J. J., Olszanski D. J., Jackels S. C., Callahan R. C., Christoph G. G. Steric control of CO binding in a totally synthetic heme protein model. Proc Natl Acad Sci U S A. 1981 Oct;78(10):5919–5923. doi: 10.1073/pnas.78.10.5919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caughey W. S. Carbon monoxide bonding in hemeproteins. Ann N Y Acad Sci. 1970 Oct 5;174(1):148–153. doi: 10.1111/j.1749-6632.1970.tb49781.x. [DOI] [PubMed] [Google Scholar]
  4. Huestis W. H., Raftery M. A. Conformation and cooperativity in hemoglobin. Biochemistry. 1975 May 6;14(9):1886–1892. doi: 10.1021/bi00680a013. [DOI] [PubMed] [Google Scholar]
  5. MacQuarrie R., Gibson Q. H. Use of a fluorescent analogue of 2,3-diphosphoglycerate as a probe of human hemoglobin conformation during carbon monoxide binding. J Biol Chem. 1971 Sep 25;246(18):5832–5835. [PubMed] [Google Scholar]
  6. ROUGHTON F. J. The equilibrium between carbon monoxide and sheep haemoglobin at very high percentage saturations. J Physiol. 1954 Nov 29;126(2):359–383. doi: 10.1113/jphysiol.1954.sp005215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sharma V. S., Schmidt M. R., Ranney H. M. Dissociation of CO from carboxyhemoglobin. J Biol Chem. 1976 Jul 25;251(14):4267–4272. [PubMed] [Google Scholar]
  8. Wallace W. J., Volpe J. A., Maxwell J. C., Caughey W. S. Properties of hemoglobin A and hemoglobin Zurich (beta63 histidine replaced by arginine): quantitative evaluation of functional abnormalities in hemoglobins. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1379–1386. doi: 10.1016/0006-291x(76)90348-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES