Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Oct;79(19):5833–5836. doi: 10.1073/pnas.79.19.5833

Mechanism of tobacco mosaic virus assembly: role of subunit and larger aggregate protein.

M Fukuda, Y Okada
PMCID: PMC347004  PMID: 6964390

Abstract

Tobacco mosaic virus (TMV) was reconstituted from the RNA of a common strain (OM) and the protein of a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is a member of the tobamovirus group. In 0.25 M phosphate buffer at 25 degrees C, CGMMV-W protein existed mainly as 21S aggregates. When this protein was mixed with OM RNA, complexes of short rods were formed but further elongation did not occur. After the addition of subunits in 0.1 M phosphate buffer at 25 degrees C, elongation to the 5' end of the RNA proceeded as fast as in the case of reconstitution with the usual equilibrium "disk preparation" of OM protein, to give 260-nm intermediates in the first 5-7 min. The results proved that the rapid elongation we previously observed in the reconstitution of TMV-OM following the assembly initiation is the outcome of preferential incorporation of TMV subunit protein. Either preformed 21S aggregate or the subunit of CGMMV protein was added to the 260-nm intermediate. Elongation to the 3' end of the RNA was investigated in 0.1 M phosphate buffer at 25 degrees C by measuring the distribution of rod length and the RNase-resistant infectivity. The results showed that the 21S aggregate is kinetically favored as the protein source during the slow elongation process.

Full text

PDF
5833

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butler P. J., Klug A. Assembly of the particle of tobacco mosaic virus from RNA and disks of protein. Nat New Biol. 1971 Jan 13;229(2):47–50. doi: 10.1038/newbio229047a0. [DOI] [PubMed] [Google Scholar]
  2. Durham A. C., Finch J. T. Structure and roles of the polymorphic forms of tobacco mosaic virus protein. II. Electron microscope observations of the larger polymers. J Mol Biol. 1972 Jun 20;67(2):307–314. doi: 10.1016/0022-2836(72)90243-4. [DOI] [PubMed] [Google Scholar]
  3. Durham A. C. Structures and roles of the polymorphic forms of tobacco mosaic virus protein. I. Sedimentation studies. J Mol Biol. 1972 Jun 20;67(2):289–305. doi: 10.1016/0022-2836(72)90242-2. [DOI] [PubMed] [Google Scholar]
  4. FRAENKEL-CONRAT H. Degradation of tobacco mosaic virus with acetic acid. Virology. 1957 Aug;4(1):1–4. doi: 10.1016/0042-6822(57)90038-7. [DOI] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
  6. Fukuda M., Meshi T., Okada Y., Otsuki Y., Takebe I. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4231–4235. doi: 10.1073/pnas.78.7.4231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fukuda M., Ohno T., Okada Y., Otsuki Y., Takebe I. Kinetics of biphasic reconstitution of tobacco mosaic virus in vitro. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1727–1730. doi: 10.1073/pnas.75.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guilley H., Jonard G., Kukla B., Richards K. E. Sequence of 1000 nucleotides at the 3' end of tobacco mosaic virus RNA. Nucleic Acids Res. 1979 Apr;6(4):1287–1308. doi: 10.1093/nar/6.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirth L., Richards K. E. Tobacco mosaic virus: model for structure and function of a simple virus. Adv Virus Res. 1981;26:145–199. doi: 10.1016/s0065-3527(08)60423-6. [DOI] [PubMed] [Google Scholar]
  10. Inoue H., Kuriyama K., Ono T., Okada Y. Circular dichroism and sedimentation studies on the reconstitution of tobacco mosaic virus. Arch Biochem Biophys. 1974 Nov;165(1):34–45. doi: 10.1016/0003-9861(74)90138-6. [DOI] [PubMed] [Google Scholar]
  11. Jonard G., Richards K. E., Guilley H., Hirth L. Sequence from the assembly nucleation region of TMV RNA. Cell. 1977 Jul;11(3):483–493. doi: 10.1016/0092-8674(77)90066-6. [DOI] [PubMed] [Google Scholar]
  12. Lebeurier G., Nicolaieff A., Richards K. E. Inside-out model for self-assembly of tobacco mosaic virus. Proc Natl Acad Sci U S A. 1977 Jan;74(1):149–153. doi: 10.1073/pnas.74.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lomonossoff G. P., Butler P. J. Assembly of tobacco mosaic virus: elongation towards the 3'-hydroxyl terminus of the RNA. FEBS Lett. 1980 May 5;113(2):271–274. doi: 10.1016/0014-5793(80)80607-7. [DOI] [PubMed] [Google Scholar]
  14. Meshi T., Ohno T., Iba H., Okada Y. Nucleotide sequence of a cloned cDNA copy of TMV (cowpea strain) RNA, including the assembly origin, the coat protein cistron, and the 3' non-coding region. Mol Gen Genet. 1981;184(1):20–25. doi: 10.1007/BF00271189. [DOI] [PubMed] [Google Scholar]
  15. Meshi T., Ohno T., Okada Y. Nucleotide sequence and its character of cistron coding for the 30 K protein of tobacco mosaic virus (OM strain). J Biochem. 1982 Apr;91(4):1441–1444. doi: 10.1093/oxfordjournals.jbchem.a133833. [DOI] [PubMed] [Google Scholar]
  16. Nozu Y., Tochihara H., Komuro Y., Okada Y. Chemical and immunological characterization of cucumber green mottle mosaic virus (watermelon strain) protein. Virology. 1971 Sep;45(3):577–585. doi: 10.1016/0042-6822(71)90173-5. [DOI] [PubMed] [Google Scholar]
  17. Ohno T., Takahashi M., Okada Y. Assembly of tobacco mosaic virus in vitro: elongation of partially reconstituted RNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):552–555. doi: 10.1073/pnas.74.2.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ono T., Inoue H., Okada Y. Assembly of rod-shaped virus in vitro: reconstitution with cucumber green mottle mosaic virus protein and tobacco mosaic virus RNA. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3680–3683. doi: 10.1073/pnas.69.12.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ono T., Okada Y., Nonomura Y., INOUE H. Assembly of a rod-shaped virus. Disk aggregate of cucumber green mottle mosaic virus protein and its function. J Biochem. 1975 Feb;77(2):313–319. doi: 10.1093/oxfordjournals.jbchem.a130728. [DOI] [PubMed] [Google Scholar]
  20. Otsuki Y., Takebe I., Ohno T., Fukuda M., Okada Y. Reconstitution of tobacco mosaic virus rods occurs bidirectionally from an internal initiation region: demonstration by electron microscopic serology. Proc Natl Acad Sci U S A. 1977 May;74(5):1913–1917. doi: 10.1073/pnas.74.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richards K. E., Williams R. C. Assembly of tobacco mosaic virus in vitro: effect of state of polymerization of the protein component. Proc Natl Acad Sci U S A. 1972 May;69(5):1121–1124. doi: 10.1073/pnas.69.5.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richards K. E., Williams R. C. Assembly of tobacco mosaic virus rods in vitro. Elongation of partially assembled rods. Biochemistry. 1973 Nov 6;12(23):4574–4581. doi: 10.1021/bi00747a005. [DOI] [PubMed] [Google Scholar]
  23. Shire S. J., Stegkert J. J., Schuster T. M. Mechanism of tobacco mosaic virus assembly: Incorporation of 4S and 20S protein at pH 7.0 and 20 degrees C. Proc Natl Acad Sci U S A. 1981 Jan;78(1):256–260. doi: 10.1073/pnas.78.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zimmern D. The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell. 1977 Jul;11(3):463–482. doi: 10.1016/0092-8674(77)90065-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES