Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):m1230–m1231. doi: 10.1107/S160053681203704X

(18-Crown-6)potassium [(1,2,5,6-η)-cyclo­octa-1,5-diene][(1,2,3,4-η)-naph­tha­lene]­ferrate(−I)

William W Brennessel a,*, John E Ellis a
PMCID: PMC3470125  PMID: 23125569

Abstract

The title salt, [K(C12H24O6)][Fe(C8H12)(C10H8)], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(−I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo­octa­diene, 18-crown-6 = 1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra­hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°.

Related literature  

For the known complexes that contain iron in a formally negative oxidation state with solely olefinic ligands, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980); Brennessel et al. (2007). For the various syntheses of the cobalt analog of the title complex, see: Brennessel et al. (2006); Brennessel & Ellis (2012). For an example of a diamagnetic, formally Fe(0) naphthalene­ferrate(−I), see: Schnökelborg et al. (2012). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a discussion of polyaromatic hydro­carbons and their Dewar’s resonance energies, see: Milun et al. (1972).graphic file with name e-68-m1230-scheme1.jpg

Experimental  

Crystal data  

  • [K(C12H24O6)][Fe(C8H12)(C10H8)]

  • M r = 595.60

  • Triclinic, Inline graphic

  • a = 9.244 (1) Å

  • b = 10.5285 (12) Å

  • c = 15.971 (2) Å

  • α = 76.085 (2)°

  • β = 89.651 (2)°

  • γ = 74.949 (2)°

  • V = 1454.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.42 × 0.32 × 0.22 mm

Data collection  

  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.666, T max = 0.746

  • 17413 measured reflections

  • 6610 independent reflections

  • 5576 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.073

  • S = 1.04

  • 6610 reflections

  • 423 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: SHELXTL (Sheldrick, 2008b ); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203704X/wm2674sup1.cif

e-68-m1230-sup1.cif (49.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203704X/wm2674Isup2.hkl

e-68-m1230-Isup2.hkl (323.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

supplementary crystallographic information

Comment

To date there are very few reported complexes of iron in a formally negative oxidation state and supported solely by olefinic ligands. In the 1970s Klaus Jonas and coworkers devised a way to synthesize (L)2Li2Fe(C═C)2, where L = tetramethylethylenediamine and C═C = 2(ethylene) or 1,5-cyclooctadiene (cod) or L = 1,2-dimethoxyethane (dme) and C═C = 1,5-cod (Jonas, 1979, 1981; Jonas et al., 1979; Jonas & Krüger, 1980), for which the cod complex is a direct derivative of the ethylene complex. Because ferrocene (FeCp2) was the starting material, the synthesis of the homoleptic ethylene complex required pressurized ethylene gas to fully displace both cyclopentadienyl ligands (5 atm prior to heating to 323 K in a closed vessel; Jonas, 1979). To avoid the need for the superambient pressures necessary with ferrocene, we devised syntheses from a ferrous halide, FeBr2. Recently we reported the syntheses of new ferrate anions bis(anthracene)ferrate(-I), bis(butadiene)ferrate(-I), and mixed-ligand (anthracene)(1,5-cod)ferrate(-I) (Brennessel et al., 2007). The title complex is unique because it is the sole example of a naphthalene complex containing iron in a formally negative oxidation state. Only one other naphthaleneferrate(-I) has been reported in the primary literature, a diamagnetic formally Fe(0) complex, (18-crown-6)potassium (η5-C5Me5)(η4-naphthalene)ferrate(-I) (Schnökelborg et al., 2012). Several neutral and cationic heteroleptic naphthalene—iron complexes have also been structurally characterized, as discussed elsewhere (Brennessel, 2009).

Unlike what was observed in the cobalt system, in which the reduction of CoBr2 by three equivalents of potassium naphthalene in the presence of excess 1,5-cod led to the homoleptic 1,5-cod anion [Co(η4-1,5-cod)2]- (Brennessel et al., 2006; Brennessel & Ellis, 2012), only one molecule of 1,5-cod is found coordinating to the iron atom regardless of excess 1,5-cod. This was not the only product, since carbonylation of the bulk material showed νCO stretching frequencies corresponding to [Fe2(CO)8]2- (major) and [Fe(CO)4]2- (minor). If the naphthalene radical anion is reducing enough to afford an Fe(-II) species directly, then that species could be the precursor to the minor carbonylation product, the Fe(-II) carbonyl. However, since the yield of the title complex is modest (40–50%), there is likely excess reducing agent left over from the initial reduction which easily could have reduced the Fe(-I) carbonyl to Fe(-II). Unfortunately, it has proved very difficult to separate the title complex from the naphthalene radical anion, and no further optimizations or characterizations have been performed to date.

The bond lengths of the metal-coordinating olefins (C1═C2 and C3═C4, Figure 1) of the naphthalene ligand (1.424 (3) Å, avg.) are statistically identical to those found in the related anthracene-cod ferrate anion, [Fe(C14H10)(C8H12)]- (1.422 (4) Å, avg.; Brennessel et al., 2007), which suggests that naphthalene is performing an equivalent role in supporting the low-valent iron atom. Even so, anthracene quantitatively displaces naphthalene at room temperature in THF solution (i.e., the title complex can be converted to the anthracene-cod ferrate with ease), a result that can be justified with Dewar's resonance energies (Milun et al., 1972). Both the title complex and the anthracene-cod ferrate have an essentially tetrahedral geometry about their iron atoms and have similar polyaromatic hydrocarbon fold angles (for the title structure the fold angle between the planes defined by atoms C1, C2, C3, C4 and C1, C4, C5, C6, C7, C8, C9, C10, respectively, amounts to 19.2 (1) °.)

The packing of the molecular entities is shown in Figure 2.

Experimental

Details on the preparation and purification of reagents and solvents, and descriptions of the equipment and techniques can be found elsewhere (Brennessel, 2009). Under argon, an orange slurry of anhydrous FeBr2 (0.500 g, 2.32 mmol) in THF (50 ml, 195 K) was added to a deep green solution of K[C10H8] (6.86 mmol) and excess 1,5-cyclooctadiene (0.882 g, 8.15 mmol) in THF (50 ml, 195 K). The resulting reddish-yellow solution was warmed slowly to room temperature, when it was filtered to remove KBr. 18-crown-6 (0.613 g, 2.32 mmol) in THF (30 ml) was added to the deep red filtrate and the solvent was removed in vacuo. Pentane (40 ml) was added and the solid was carefully scraped off the flask wall with the stir bar. The slurry was then filtered, and the product was washed with pentane (30 ml) and dried in vacuo, yielding a dark red solid (0.607 g, 44% assuming the uni-negative title complex: see Comment above). An analytically pure bulk sample has not been obtained to date. Dark red blocks were grown from a pentane-layered THF solution at 273 K.

Refinement

Hydrogen atoms on the naphthalene ligand and on the metal-coordinating carbon atoms of the 1,5-cod ligand were found from a difference Fourier map, and their positional and isotropic displacement parameters were refined independently from those of their respective bonded carbon atoms. All other hydrogen atoms were placed geometrically, and refined relative to their respective bonded carbon atoms with a bond lengths of 0.99 Å and Uiso[H] = 1.2.Ueq[C].

Figures

Fig. 1.

Fig. 1.

Molecular structure of the anion showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing plot that features the cation-anion contacts.

Crystal data

[K(C12H24O6)][Fe(C8H12)(C10H8)] Z = 2
Mr = 595.60 F(000) = 634
Triclinic, P1 Dx = 1.360 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.244 (1) Å Cell parameters from 3650 reflections
b = 10.5285 (12) Å θ = 2.3–27.5°
c = 15.971 (2) Å µ = 0.70 mm1
α = 76.085 (2)° T = 173 K
β = 89.651 (2)° Block, dark red
γ = 74.949 (2)° 0.42 × 0.32 × 0.22 mm
V = 1454.4 (3) Å3

Data collection

Siemens SMART CCD diffractometer 6610 independent reflections
Radiation source: normal-focus sealed tube 5576 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω scans per φ θmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −12→11
Tmin = 0.666, Tmax = 0.746 k = −13→13
17413 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.4038P] where P = (Fo2 + 2Fc2)/3
6610 reflections (Δ/σ)max = 0.001
423 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.66405 (2) 0.07626 (2) 0.327243 (13) 0.02107 (7)
C1 0.42748 (18) 0.15429 (16) 0.29524 (11) 0.0273 (3)
H1 0.364 (2) 0.1109 (18) 0.2718 (11) 0.033 (5)*
C2 0.46028 (19) 0.12384 (16) 0.38572 (11) 0.0300 (4)
H2 0.420 (2) 0.058 (2) 0.4266 (13) 0.041 (5)*
C3 0.5629 (2) 0.18225 (16) 0.41542 (11) 0.0296 (4)
H3 0.597 (2) 0.1600 (19) 0.4752 (13) 0.036 (5)*
C4 0.62680 (19) 0.27169 (16) 0.35391 (10) 0.0271 (3)
H4 0.704 (2) 0.3085 (17) 0.3709 (11) 0.029 (5)*
C5 0.57720 (19) 0.45705 (16) 0.21584 (11) 0.0292 (4)
H5 0.644 (2) 0.4972 (18) 0.2374 (11) 0.029 (5)*
C6 0.5125 (2) 0.50782 (18) 0.13140 (12) 0.0347 (4)
H6 0.535 (2) 0.583 (2) 0.0952 (12) 0.038 (5)*
C7 0.4159 (2) 0.44642 (19) 0.10107 (12) 0.0363 (4)
H7 0.370 (2) 0.4835 (19) 0.0440 (13) 0.038 (5)*
C8 0.38090 (19) 0.33404 (17) 0.15534 (11) 0.0304 (4)
H8 0.312 (2) 0.2921 (18) 0.1354 (11) 0.033 (5)*
C9 0.44646 (17) 0.27912 (15) 0.23910 (10) 0.0245 (3)
C10 0.54882 (17) 0.34143 (15) 0.27027 (10) 0.0241 (3)
C11 0.83151 (18) 0.08378 (17) 0.24371 (10) 0.0252 (3)
H11 0.8227 (19) 0.1757 (18) 0.2129 (11) 0.029 (5)*
C12 0.72907 (18) 0.02003 (16) 0.21617 (10) 0.0249 (3)
H12 0.658 (2) 0.0732 (18) 0.1659 (11) 0.030 (5)*
C13 0.7681 (2) −0.13215 (17) 0.22562 (11) 0.0291 (4)
H13A 0.681 (2) −0.1568 (18) 0.2049 (11) 0.033 (5)*
H13B 0.853 (2) −0.1600 (18) 0.1890 (12) 0.034 (5)*
C14 0.8100 (2) −0.21363 (17) 0.32012 (12) 0.0311 (4)
H14A 0.916 (2) −0.2459 (18) 0.3285 (11) 0.032 (5)*
H14B 0.772 (2) −0.2956 (19) 0.3322 (12) 0.036 (5)*
C15 0.74815 (18) −0.12962 (16) 0.38461 (10) 0.0274 (3)
H15 0.6795 (19) −0.1666 (17) 0.4243 (11) 0.025 (4)*
C16 0.83112 (19) −0.05207 (17) 0.41517 (11) 0.0294 (4)
H16 0.813 (2) −0.0428 (18) 0.4740 (12) 0.035 (5)*
C17 0.9833 (2) −0.0384 (2) 0.38516 (12) 0.0369 (4)
H17A 1.063 (2) −0.122 (2) 0.4099 (12) 0.042 (5)*
H17B 1.006 (2) 0.033 (2) 0.4088 (12) 0.037 (5)*
C18 0.98569 (19) 0.00363 (19) 0.28624 (12) 0.0321 (4)
H18A 1.0232 (19) −0.0742 (18) 0.2615 (11) 0.030 (5)*
H18B 1.058 (2) 0.0561 (19) 0.2702 (12) 0.038 (5)*
K1 0.20189 (4) 0.61844 (4) 0.21260 (2) 0.02749 (9)
O1 0.15085 (12) 0.44660 (11) 0.36324 (7) 0.0284 (2)
O2 −0.03471 (13) 0.48729 (11) 0.21687 (7) 0.0286 (2)
O3 0.02462 (13) 0.65530 (12) 0.05729 (7) 0.0315 (3)
O4 0.18316 (13) 0.85078 (12) 0.06839 (7) 0.0330 (3)
O5 0.37379 (13) 0.80421 (11) 0.21515 (7) 0.0310 (3)
O6 0.29972 (12) 0.64416 (11) 0.37056 (7) 0.0256 (2)
C19 0.02914 (19) 0.38609 (17) 0.36605 (11) 0.0316 (4)
H19A −0.0635 0.4477 0.3797 0.038*
H19B 0.0515 0.2998 0.4114 0.038*
C20 0.00795 (19) 0.35982 (16) 0.27952 (11) 0.0308 (4)
H20A 0.1025 0.3025 0.2644 0.037*
H20B −0.0710 0.3115 0.2808 0.037*
C21 −0.06693 (19) 0.47181 (18) 0.13330 (11) 0.0310 (4)
H21A −0.1514 0.4298 0.1351 0.037*
H21B 0.0219 0.4120 0.1145 0.037*
C22 −0.10719 (19) 0.60868 (19) 0.07117 (11) 0.0332 (4)
H22A −0.1490 0.6027 0.0158 0.040*
H22B −0.1841 0.6730 0.0950 0.040*
C23 −0.0027 (2) 0.78647 (17) −0.00035 (11) 0.0355 (4)
H23A −0.0771 0.8532 0.0232 0.043*
H23B −0.0440 0.7849 −0.0570 0.043*
C24 0.1409 (2) 0.82724 (18) −0.01150 (11) 0.0358 (4)
H24A 0.2202 0.7543 −0.0266 0.043*
H24B 0.1270 0.9108 −0.0586 0.043*
C25 0.31741 (19) 0.89400 (18) 0.06443 (11) 0.0342 (4)
H25A 0.3073 0.9753 0.0160 0.041*
H25B 0.4031 0.8211 0.0547 0.041*
C26 0.3439 (2) 0.92658 (17) 0.14826 (11) 0.0330 (4)
H26A 0.4303 0.9665 0.1451 0.040*
H26B 0.2542 0.9933 0.1605 0.040*
C30 0.17578 (18) 0.48077 (17) 0.44181 (10) 0.0278 (3)
H30A 0.1836 0.4013 0.4912 0.033*
H30B 0.0907 0.5555 0.4499 0.033*
C31 0.31821 (18) 0.52392 (16) 0.43816 (10) 0.0272 (3)
H31A 0.3414 0.5416 0.4940 0.033*
H31B 0.4024 0.4511 0.4270 0.033*
C32 0.43081 (17) 0.69279 (16) 0.36395 (10) 0.0267 (3)
H32A 0.5150 0.6267 0.3462 0.032*
H32B 0.4602 0.7039 0.4207 0.032*
C33 0.39767 (18) 0.82636 (16) 0.29834 (11) 0.0283 (3)
H33A 0.3070 0.8895 0.3128 0.034*
H33B 0.4829 0.8672 0.2981 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02165 (12) 0.02075 (11) 0.01995 (11) −0.00350 (8) 0.00137 (8) −0.00573 (8)
C1 0.0217 (8) 0.0211 (8) 0.0376 (9) −0.0045 (6) 0.0020 (7) −0.0057 (7)
C2 0.0292 (9) 0.0237 (8) 0.0328 (9) −0.0032 (7) 0.0117 (7) −0.0034 (7)
C3 0.0367 (9) 0.0258 (8) 0.0231 (8) −0.0009 (7) 0.0062 (7) −0.0082 (7)
C4 0.0287 (8) 0.0261 (8) 0.0290 (8) −0.0057 (7) 0.0028 (7) −0.0130 (7)
C5 0.0276 (8) 0.0233 (8) 0.0380 (9) −0.0077 (7) 0.0099 (7) −0.0090 (7)
C6 0.0368 (10) 0.0258 (9) 0.0352 (10) −0.0050 (7) 0.0134 (8) 0.0002 (7)
C7 0.0351 (10) 0.0371 (10) 0.0271 (9) 0.0003 (8) 0.0024 (8) −0.0006 (8)
C8 0.0251 (8) 0.0314 (9) 0.0320 (9) −0.0026 (7) −0.0015 (7) −0.0076 (7)
C9 0.0201 (7) 0.0213 (7) 0.0301 (8) −0.0004 (6) 0.0048 (6) −0.0085 (6)
C10 0.0229 (8) 0.0206 (7) 0.0289 (8) −0.0021 (6) 0.0076 (6) −0.0105 (6)
C11 0.0265 (8) 0.0252 (8) 0.0247 (8) −0.0075 (6) 0.0057 (6) −0.0072 (6)
C12 0.0248 (8) 0.0284 (8) 0.0213 (7) −0.0048 (6) 0.0025 (6) −0.0082 (6)
C13 0.0287 (9) 0.0295 (9) 0.0327 (9) −0.0068 (7) 0.0040 (7) −0.0157 (7)
C14 0.0304 (9) 0.0230 (8) 0.0389 (10) −0.0042 (7) 0.0006 (7) −0.0088 (7)
C15 0.0276 (8) 0.0239 (8) 0.0257 (8) −0.0029 (7) 0.0000 (7) −0.0009 (6)
C16 0.0296 (9) 0.0297 (9) 0.0244 (8) −0.0009 (7) −0.0048 (7) −0.0054 (7)
C17 0.0275 (9) 0.0385 (10) 0.0422 (11) −0.0033 (8) −0.0098 (8) −0.0112 (8)
C18 0.0213 (8) 0.0342 (9) 0.0443 (10) −0.0077 (7) 0.0053 (7) −0.0160 (8)
K1 0.03164 (19) 0.03177 (19) 0.02181 (17) −0.01498 (15) 0.00019 (14) −0.00468 (14)
O1 0.0298 (6) 0.0331 (6) 0.0255 (6) −0.0146 (5) 0.0039 (5) −0.0066 (5)
O2 0.0335 (6) 0.0279 (6) 0.0285 (6) −0.0118 (5) 0.0009 (5) −0.0107 (5)
O3 0.0300 (6) 0.0322 (6) 0.0298 (6) −0.0080 (5) −0.0047 (5) −0.0032 (5)
O4 0.0394 (7) 0.0395 (7) 0.0219 (6) −0.0168 (5) 0.0009 (5) −0.0040 (5)
O5 0.0396 (7) 0.0238 (6) 0.0294 (6) −0.0127 (5) −0.0057 (5) −0.0015 (5)
O6 0.0245 (6) 0.0247 (6) 0.0260 (6) −0.0074 (4) −0.0034 (4) −0.0025 (4)
C19 0.0328 (9) 0.0314 (9) 0.0324 (9) −0.0158 (7) 0.0047 (7) −0.0033 (7)
C20 0.0303 (9) 0.0268 (8) 0.0388 (9) −0.0132 (7) 0.0045 (7) −0.0089 (7)
C21 0.0294 (9) 0.0406 (10) 0.0323 (9) −0.0158 (7) 0.0051 (7) −0.0196 (8)
C22 0.0258 (8) 0.0476 (11) 0.0297 (9) −0.0094 (8) −0.0020 (7) −0.0164 (8)
C23 0.0460 (11) 0.0296 (9) 0.0270 (9) −0.0037 (8) −0.0110 (8) −0.0063 (7)
C24 0.0544 (12) 0.0294 (9) 0.0215 (8) −0.0106 (8) −0.0001 (8) −0.0028 (7)
C25 0.0330 (9) 0.0304 (9) 0.0340 (9) −0.0094 (7) 0.0034 (7) 0.0031 (7)
C26 0.0327 (9) 0.0252 (8) 0.0382 (10) −0.0126 (7) −0.0038 (7) 0.0033 (7)
C30 0.0311 (9) 0.0301 (8) 0.0198 (8) −0.0080 (7) 0.0016 (6) −0.0018 (6)
C31 0.0292 (8) 0.0284 (8) 0.0209 (8) −0.0050 (7) −0.0024 (6) −0.0028 (6)
C32 0.0229 (8) 0.0299 (8) 0.0288 (8) −0.0075 (6) −0.0032 (6) −0.0096 (7)
C33 0.0256 (8) 0.0268 (8) 0.0352 (9) −0.0096 (7) −0.0019 (7) −0.0095 (7)

Geometric parameters (Å, º)

Fe1—C12 2.0410 (15) C18—H18B 0.972 (19)
Fe1—C11 2.0421 (15) K1—O1 2.7604 (11)
Fe1—C16 2.0525 (16) K1—O6 2.7818 (11)
Fe1—C3 2.0736 (16) K1—O5 2.8294 (11)
Fe1—C15 2.0786 (16) K1—O2 2.8664 (11)
Fe1—C2 2.0940 (16) K1—O3 2.8715 (12)
Fe1—C4 2.1413 (16) K1—O4 2.8972 (12)
Fe1—C1 2.1441 (16) O1—C30 1.4216 (19)
C1—C2 1.420 (2) O1—C19 1.4254 (19)
C1—C9 1.454 (2) O2—C21 1.4252 (19)
C1—H1 0.960 (18) O2—C20 1.4289 (19)
C2—C3 1.397 (2) O3—C23 1.424 (2)
C2—H2 0.98 (2) O3—C22 1.425 (2)
C3—C4 1.427 (2) O4—C25 1.425 (2)
C3—H3 0.961 (19) O4—C24 1.432 (2)
C4—C10 1.452 (2) O5—C26 1.4263 (18)
C4—H4 0.961 (18) O5—C33 1.4310 (19)
C5—C6 1.400 (3) O6—C31 1.4247 (18)
C5—C10 1.400 (2) O6—C32 1.4271 (18)
C5—K1 3.4387 (17) C19—C20 1.497 (2)
C5—H5 0.941 (18) C19—H19A 0.9900
C6—C7 1.380 (3) C19—H19B 0.9900
C6—K1 3.1978 (18) C20—H20A 0.9900
C6—H6 0.932 (19) C20—H20B 0.9900
C7—C8 1.399 (2) C21—C22 1.496 (2)
C7—K1 3.1647 (19) C21—H21A 0.9900
C7—H7 0.955 (19) C21—H21B 0.9900
C8—C9 1.395 (2) C22—H22A 0.9900
C8—K1 3.3565 (18) C22—H22B 0.9900
C8—H8 0.959 (18) C23—C24 1.494 (3)
C9—C10 1.435 (2) C23—H23A 0.9900
C11—C12 1.420 (2) C23—H23B 0.9900
C11—C18 1.522 (2) C24—H24A 0.9900
C11—H11 0.957 (18) C24—H24B 0.9900
C12—C13 1.518 (2) C25—C26 1.496 (2)
C12—H12 0.994 (18) C25—H25A 0.9900
C13—C14 1.541 (2) C25—H25B 0.9900
C13—H13A 0.986 (18) C26—H26A 0.9900
C13—H13B 0.997 (19) C26—H26B 0.9900
C14—C15 1.529 (2) C30—C31 1.497 (2)
C14—H14A 0.944 (19) C30—H30A 0.9900
C14—H14B 0.993 (19) C30—H30B 0.9900
C15—C16 1.419 (2) C31—H31A 0.9900
C15—H15 0.980 (17) C31—H31B 0.9900
C16—C17 1.514 (3) C32—C33 1.497 (2)
C16—H16 0.977 (19) C32—H32A 0.9900
C17—C18 1.537 (3) C32—H32B 0.9900
C17—H17A 0.98 (2) C33—H33A 0.9900
C17—H17B 0.99 (2) C33—H33B 0.9900
C18—H18A 0.977 (18)
C12—Fe1—C11 40.72 (6) C18—C17—H17B 108.4 (11)
C12—Fe1—C16 101.66 (7) H17A—C17—H17B 106.2 (16)
C11—Fe1—C16 85.08 (7) C11—C18—C17 112.01 (14)
C12—Fe1—C3 163.78 (7) C11—C18—H18A 108.9 (10)
C11—Fe1—C3 137.43 (7) C17—C18—H18A 112.3 (10)
C16—Fe1—C3 93.69 (7) C11—C18—H18B 110.4 (11)
C12—Fe1—C15 83.82 (7) C17—C18—H18B 109.6 (11)
C11—Fe1—C15 94.47 (7) H18A—C18—H18B 103.1 (15)
C16—Fe1—C15 40.18 (6) O1—K1—O6 60.69 (3)
C3—Fe1—C15 111.66 (7) O1—K1—O5 121.15 (3)
C12—Fe1—C2 135.35 (7) O6—K1—O5 60.68 (3)
C11—Fe1—C2 162.51 (7) O1—K1—O2 59.38 (3)
C16—Fe1—C2 111.20 (7) O6—K1—O2 116.23 (3)
C3—Fe1—C2 39.17 (7) O5—K1—O2 165.04 (4)
C15—Fe1—C2 102.14 (7) O1—K1—O3 119.37 (3)
C12—Fe1—C4 128.82 (6) O6—K1—O3 162.63 (4)
C11—Fe1—C4 100.06 (6) O5—K1—O3 117.93 (3)
C16—Fe1—C4 105.99 (7) O2—K1—O3 60.05 (3)
C3—Fe1—C4 39.54 (6) O1—K1—O4 163.85 (4)
C15—Fe1—C4 141.78 (6) O6—K1—O4 115.14 (3)
C2—Fe1—C4 70.01 (6) O5—K1—O4 58.73 (3)
C12—Fe1—C1 99.01 (7) O2—K1—O4 116.06 (3)
C11—Fe1—C1 126.64 (6) O3—K1—O4 59.37 (3)
C16—Fe1—C1 146.94 (7) C30—O1—C19 112.41 (12)
C3—Fe1—C1 69.83 (7) C30—O1—K1 116.80 (9)
C15—Fe1—C1 118.39 (6) C19—O1—K1 120.44 (9)
C2—Fe1—C1 39.12 (7) C21—O2—C20 111.93 (12)
C4—Fe1—C1 79.83 (6) C21—O2—K1 110.68 (9)
C2—C1—C9 120.56 (15) C20—O2—K1 108.68 (9)
C2—C1—Fe1 68.54 (9) C23—O3—C22 112.93 (13)
C9—C1—Fe1 92.17 (10) C23—O3—K1 114.91 (9)
C2—C1—H1 120.7 (11) C22—O3—K1 114.12 (9)
C9—C1—H1 115.8 (11) C25—O4—C24 112.73 (13)
Fe1—C1—H1 126.7 (11) C25—O4—K1 111.39 (9)
C3—C2—C1 118.02 (15) C24—O4—K1 112.03 (9)
C3—C2—Fe1 69.62 (9) C26—O5—C33 112.31 (12)
C1—C2—Fe1 72.35 (9) C26—O5—K1 118.54 (9)
C3—C2—H2 120.0 (11) C33—O5—K1 114.97 (9)
C1—C2—H2 121.8 (11) C31—O6—C32 111.88 (11)
Fe1—C2—H2 124.6 (11) C31—O6—K1 113.19 (8)
C2—C3—C4 118.71 (15) C32—O6—K1 112.13 (9)
C2—C3—Fe1 71.20 (9) O1—C19—C20 108.19 (13)
C4—C3—Fe1 72.78 (9) O1—C19—H19A 110.1
C2—C3—H3 122.6 (11) C20—C19—H19A 110.1
C4—C3—H3 118.6 (11) O1—C19—H19B 110.1
Fe1—C3—H3 123.8 (11) C20—C19—H19B 110.1
C3—C4—C10 120.06 (15) H19A—C19—H19B 108.4
C3—C4—Fe1 67.67 (9) O2—C20—C19 108.37 (13)
C10—C4—Fe1 92.85 (10) O2—C20—H20A 110.0
C3—C4—H4 121.5 (10) C19—C20—H20A 110.0
C10—C4—H4 116.0 (10) O2—C20—H20B 110.0
Fe1—C4—H4 125.3 (10) C19—C20—H20B 110.0
C6—C5—C10 120.95 (16) H20A—C20—H20B 108.4
C6—C5—H5 121.4 (11) O2—C21—C22 108.77 (13)
C10—C5—H5 117.6 (11) O2—C21—H21A 109.9
K1—C5—H5 116.1 (11) C22—C21—H21A 109.9
C7—C6—C5 120.30 (16) O2—C21—H21B 109.9
C7—C6—H6 119.6 (12) C22—C21—H21B 109.9
C5—C6—H6 120.1 (12) H21A—C21—H21B 108.3
K1—C6—H6 106.6 (12) O3—C22—C21 108.65 (13)
C6—C7—C8 119.87 (17) O3—C22—H22A 110.0
C6—C7—H7 119.7 (12) C21—C22—H22A 110.0
C8—C7—H7 120.4 (12) O3—C22—H22B 110.0
K1—C7—H7 103.4 (12) C21—C22—H22B 110.0
C9—C8—C7 121.13 (16) H22A—C22—H22B 108.3
C9—C8—H8 118.3 (11) O3—C23—C24 109.44 (14)
C7—C8—H8 120.6 (11) O3—C23—H23A 109.8
K1—C8—H8 111.7 (11) C24—C23—H23A 109.8
C8—C9—C10 119.06 (15) O3—C23—H23B 109.8
C8—C9—C1 123.75 (15) C24—C23—H23B 109.8
C10—C9—C1 116.98 (14) H23A—C23—H23B 108.2
C5—C10—C9 118.62 (15) O4—C24—C23 107.90 (14)
C5—C10—C4 124.29 (15) O4—C24—H24A 110.1
C9—C10—C4 116.83 (14) C23—C24—H24A 110.1
C12—C11—C18 122.17 (15) O4—C24—H24B 110.1
C12—C11—Fe1 69.60 (9) C23—C24—H24B 110.1
C18—C11—Fe1 112.75 (11) H24A—C24—H24B 108.4
C12—C11—H11 116.2 (10) O4—C25—C26 108.20 (14)
C18—C11—H11 116.0 (10) O4—C25—H25A 110.1
Fe1—C11—H11 110.0 (10) C26—C25—H25A 110.1
C11—C12—C13 121.97 (14) O4—C25—H25B 110.1
C11—C12—Fe1 69.68 (9) C26—C25—H25B 110.1
C13—C12—Fe1 113.82 (11) H25A—C25—H25B 108.4
C11—C12—H12 117.4 (10) O5—C26—C25 108.47 (13)
C13—C12—H12 113.5 (10) O5—C26—H26A 110.0
Fe1—C12—H12 112.3 (10) C25—C26—H26A 110.0
C12—C13—C14 112.40 (13) O5—C26—H26B 110.0
C12—C13—H13A 109.6 (10) C25—C26—H26B 110.0
C14—C13—H13A 108.0 (10) H26A—C26—H26B 108.4
C12—C13—H13B 110.3 (10) O1—C30—C31 108.80 (13)
C14—C13—H13B 109.5 (10) O1—C30—H30A 109.9
H13A—C13—H13B 106.9 (14) C31—C30—H30A 109.9
C15—C14—C13 112.34 (13) O1—C30—H30B 109.9
C15—C14—H14A 110.1 (11) C31—C30—H30B 109.9
C13—C14—H14A 109.2 (11) H30A—C30—H30B 108.3
C15—C14—H14B 108.8 (11) O6—C31—C30 108.64 (12)
C13—C14—H14B 110.3 (11) O6—C31—H31A 110.0
H14A—C14—H14B 105.9 (15) C30—C31—H31A 110.0
C16—C15—C14 122.00 (15) O6—C31—H31B 110.0
C16—C15—Fe1 68.92 (9) C30—C31—H31B 110.0
C14—C15—Fe1 113.32 (11) H31A—C31—H31B 108.3
C16—C15—H15 116.8 (10) O6—C32—C33 108.81 (12)
C14—C15—H15 114.3 (10) O6—C32—H32A 109.9
Fe1—C15—H15 112.9 (10) C33—C32—H32A 109.9
C15—C16—C17 124.39 (16) O6—C32—H32B 109.9
C15—C16—Fe1 70.90 (9) C33—C32—H32B 109.9
C17—C16—Fe1 110.35 (12) H32A—C32—H32B 108.3
C15—C16—H16 115.1 (11) O5—C33—C32 108.60 (12)
C17—C16—H16 114.7 (11) O5—C33—H33A 110.0
Fe1—C16—H16 112.2 (11) C32—C33—H33A 110.0
C16—C17—C18 112.64 (14) O5—C33—H33B 110.0
C16—C17—H17A 111.2 (11) C32—C33—H33B 110.0
C18—C17—H17A 111.3 (12) H33A—C33—H33B 108.4
C16—C17—H17B 106.7 (11)
C12—Fe1—C1—C2 161.21 (10) C7—C6—K1—O3 −41.08 (10)
C11—Fe1—C1—C2 −165.77 (10) C5—C6—K1—O3 −163.09 (10)
C16—Fe1—C1—C2 33.00 (16) C7—C6—K1—O4 −99.33 (11)
C3—Fe1—C1—C2 −30.98 (10) C5—C6—K1—O4 138.66 (11)
C15—Fe1—C1—C2 73.40 (11) C5—C6—K1—C7 −122.01 (16)
C4—Fe1—C1—C2 −70.74 (10) C7—C6—K1—C8 31.25 (10)
C12—Fe1—C1—C9 −76.67 (10) C5—C6—K1—C8 −90.76 (11)
C11—Fe1—C1—C9 −43.65 (13) C7—C6—K1—C5 122.01 (16)
C16—Fe1—C1—C9 155.12 (11) C9—C8—K1—O1 −41.96 (10)
C3—Fe1—C1—C9 91.14 (11) C7—C8—K1—O1 −165.52 (11)
C15—Fe1—C1—C9 −164.48 (9) C9—C8—K1—O6 12.38 (11)
C2—Fe1—C1—C9 122.12 (14) C7—C8—K1—O6 −111.18 (11)
C4—Fe1—C1—C9 51.38 (10) C9—C8—K1—O5 80.62 (10)
C9—C1—C2—C3 −25.0 (2) C7—C8—K1—O5 −42.94 (12)
Fe1—C1—C2—C3 54.32 (13) C9—C8—K1—O2 −101.61 (10)
C9—C1—C2—Fe1 −79.35 (14) C7—C8—K1—O2 134.83 (11)
C12—Fe1—C2—C3 −157.02 (10) C9—C8—K1—O3 −162.66 (10)
C11—Fe1—C2—C3 −89.1 (2) C7—C8—K1—O3 73.78 (11)
C16—Fe1—C2—C3 68.48 (11) C9—C8—K1—O4 144.42 (9)
C15—Fe1—C2—C3 109.48 (10) C7—C8—K1—O4 20.86 (11)
C4—Fe1—C2—C3 −31.50 (10) C9—C8—K1—C7 123.56 (16)
C1—Fe1—C2—C3 −130.10 (14) C9—C8—K1—C6 91.65 (11)
C12—Fe1—C2—C1 −26.92 (14) C7—C8—K1—C6 −31.91 (10)
C11—Fe1—C2—C1 41.0 (3) C9—C8—K1—C5 58.67 (10)
C16—Fe1—C2—C1 −161.42 (9) C7—C8—K1—C5 −64.89 (11)
C3—Fe1—C2—C1 130.10 (14) C6—C5—K1—O1 145.42 (11)
C15—Fe1—C2—C1 −120.42 (10) C10—C5—K1—O1 21.06 (10)
C4—Fe1—C2—C1 98.60 (10) C6—C5—K1—O6 −155.54 (11)
C1—C2—C3—C4 1.5 (2) C10—C5—K1—O6 80.10 (10)
Fe1—C2—C3—C4 57.12 (13) C6—C5—K1—O5 −93.22 (11)
C1—C2—C3—Fe1 −55.66 (13) C10—C5—K1—O5 142.42 (11)
C12—Fe1—C3—C2 79.2 (3) C6—C5—K1—O2 89.50 (11)
C11—Fe1—C3—C2 153.62 (10) C10—C5—K1—O2 −34.86 (11)
C16—Fe1—C3—C2 −119.64 (10) C6—C5—K1—O3 18.96 (11)
C15—Fe1—C3—C2 −82.59 (11) C10—C5—K1—O3 −105.40 (10)
C4—Fe1—C3—C2 129.54 (15) C6—C5—K1—O4 −41.51 (11)
C1—Fe1—C3—C2 30.94 (10) C10—C5—K1—O4 −165.87 (10)
C12—Fe1—C3—C4 −50.3 (3) C6—C5—K1—C7 32.05 (10)
C11—Fe1—C3—C4 24.08 (15) C10—C5—K1—C7 −92.31 (11)
C16—Fe1—C3—C4 110.82 (10) C10—C5—K1—C6 −124.36 (16)
C15—Fe1—C3—C4 147.87 (10) C6—C5—K1—C8 65.84 (11)
C2—Fe1—C3—C4 −129.54 (15) C10—C5—K1—C8 −58.52 (10)
C1—Fe1—C3—C4 −98.60 (11) O6—K1—O1—C30 12.09 (9)
C2—C3—C4—C10 23.5 (2) O5—K1—O1—C30 17.53 (11)
Fe1—C3—C4—C10 79.89 (13) O2—K1—O1—C30 −145.04 (11)
C2—C3—C4—Fe1 −56.34 (13) O3—K1—O1—C30 −147.96 (10)
C12—Fe1—C4—C3 163.98 (10) O4—K1—O1—C30 −67.09 (16)
C11—Fe1—C4—C3 −163.72 (10) C7—K1—O1—C30 128.75 (10)
C16—Fe1—C4—C3 −76.00 (11) C6—K1—O1—C30 102.26 (11)
C15—Fe1—C4—C3 −53.04 (15) C8—K1—O1—C30 135.07 (10)
C2—Fe1—C4—C3 31.22 (10) C5—K1—O1—C30 87.59 (10)
C1—Fe1—C4—C3 70.55 (11) O6—K1—O1—C19 154.46 (12)
C12—Fe1—C4—C10 42.54 (13) O5—K1—O1—C19 159.91 (10)
C11—Fe1—C4—C10 74.83 (10) O2—K1—O1—C19 −2.66 (10)
C16—Fe1—C4—C10 162.55 (10) O3—K1—O1—C19 −5.58 (12)
C3—Fe1—C4—C10 −121.45 (15) O4—K1—O1—C19 75.29 (17)
C15—Fe1—C4—C10 −174.49 (10) C7—K1—O1—C19 −88.88 (12)
C2—Fe1—C4—C10 −90.23 (11) C6—K1—O1—C19 −115.36 (11)
C1—Fe1—C4—C10 −50.90 (10) C8—K1—O1—C19 −82.56 (11)
C10—C5—C6—C7 1.7 (3) C5—K1—O1—C19 −130.04 (11)
K1—C5—C6—C7 −72.46 (15) O1—K1—O2—C21 −153.62 (11)
C10—C5—C6—K1 74.20 (15) O6—K1—O2—C21 −175.82 (9)
C5—C6—C7—C8 0.9 (3) O5—K1—O2—C21 109.87 (15)
K1—C6—C7—C8 −78.03 (16) O3—K1—O2—C21 23.44 (9)
C5—C6—C7—K1 78.91 (15) O4—K1—O2—C21 44.00 (11)
C6—C7—C8—C9 −2.5 (3) C7—K1—O2—C21 −45.06 (10)
K1—C7—C8—C9 −76.77 (15) C6—K1—O2—C21 −51.82 (11)
C6—C7—C8—K1 74.31 (16) C8—K1—O2—C21 −62.31 (10)
C7—C8—C9—C10 1.4 (2) C5—K1—O2—C21 −80.10 (11)
K1—C8—C9—C10 −64.79 (13) O1—K1—O2—C20 −30.31 (9)
C7—C8—C9—C1 −173.11 (16) O6—K1—O2—C20 −52.52 (10)
K1—C8—C9—C1 120.69 (14) O5—K1—O2—C20 −126.82 (14)
C2—C1—C9—C8 −162.24 (15) O3—K1—O2—C20 146.75 (10)
Fe1—C1—C9—C8 131.52 (14) O4—K1—O2—C20 167.31 (9)
C2—C1—C9—C10 23.1 (2) C7—K1—O2—C20 78.25 (10)
Fe1—C1—C9—C10 −43.11 (14) C6—K1—O2—C20 71.48 (10)
C6—C5—C10—C9 −2.7 (2) C8—K1—O2—C20 60.99 (9)
K1—C5—C10—C9 60.69 (13) C5—K1—O2—C20 43.21 (10)
C6—C5—C10—C4 171.20 (15) O1—K1—O3—C23 147.96 (10)
K1—C5—C10—C4 −125.37 (14) O6—K1—O3—C23 62.70 (16)
C8—C9—C10—C5 1.2 (2) O5—K1—O3—C23 −17.99 (12)
C1—C9—C10—C5 176.05 (14) O2—K1—O3—C23 145.06 (12)
C8—C9—C10—C4 −173.22 (14) O4—K1—O3—C23 −13.44 (10)
C1—C9—C10—C4 1.7 (2) C7—K1—O3—C23 −108.02 (11)
C3—C4—C10—C5 161.21 (15) C6—K1—O3—C23 −91.28 (11)
Fe1—C4—C10—C5 −133.04 (14) C8—K1—O3—C23 −132.41 (11)
C3—C4—C10—C9 −24.8 (2) C5—K1—O3—C23 −98.89 (11)
Fe1—C4—C10—C9 41.00 (14) O1—K1—O3—C22 15.21 (11)
C16—Fe1—C11—C12 114.26 (10) O6—K1—O3—C22 −70.04 (16)
C3—Fe1—C11—C12 −155.64 (10) O5—K1—O3—C22 −150.74 (10)
C15—Fe1—C11—C12 75.15 (10) O2—K1—O3—C22 12.31 (10)
C2—Fe1—C11—C12 −86.6 (2) O4—K1—O3—C22 −146.18 (11)
C4—Fe1—C11—C12 −140.34 (10) C7—K1—O3—C22 119.24 (11)
C1—Fe1—C11—C12 −55.59 (12) C6—K1—O3—C22 135.97 (11)
C12—Fe1—C11—C18 −117.39 (16) C8—K1—O3—C22 94.84 (11)
C16—Fe1—C11—C18 −3.13 (12) C5—K1—O3—C22 128.36 (10)
C3—Fe1—C11—C18 86.97 (14) O1—K1—O4—C25 120.25 (14)
C15—Fe1—C11—C18 −42.24 (12) O6—K1—O4—C25 49.17 (11)
C2—Fe1—C11—C18 156.0 (2) O5—K1—O4—C25 25.78 (10)
C4—Fe1—C11—C18 102.27 (12) O2—K1—O4—C25 −170.22 (10)
C1—Fe1—C11—C18 −172.98 (11) O3—K1—O4—C25 −149.51 (11)
C18—C11—C12—C13 −1.4 (2) C7—K1—O4—C25 −74.70 (11)
Fe1—C11—C12—C13 −106.05 (15) C6—K1—O4—C25 −49.95 (11)
C18—C11—C12—Fe1 104.69 (15) C8—K1—O4—C25 −83.23 (11)
C16—Fe1—C12—C11 −68.04 (10) C5—K1—O4—C25 −34.13 (11)
C3—Fe1—C12—C11 92.7 (3) O1—K1—O4—C24 −112.43 (15)
C15—Fe1—C12—C11 −104.24 (10) O6—K1—O4—C24 176.48 (10)
C2—Fe1—C12—C11 154.72 (10) O5—K1—O4—C24 153.09 (12)
C4—Fe1—C12—C11 53.76 (12) O2—K1—O4—C24 −42.90 (12)
C1—Fe1—C12—C11 137.91 (10) O3—K1—O4—C24 −22.19 (10)
C11—Fe1—C12—C13 116.98 (16) C7—K1—O4—C24 52.62 (11)
C16—Fe1—C12—C13 48.94 (13) C6—K1—O4—C24 77.37 (11)
C3—Fe1—C12—C13 −150.3 (2) C8—K1—O4—C24 44.09 (12)
C15—Fe1—C12—C13 12.74 (12) C5—K1—O4—C24 93.18 (11)
C2—Fe1—C12—C13 −88.29 (14) O1—K1—O5—C26 −152.12 (11)
C4—Fe1—C12—C13 170.74 (11) O6—K1—O5—C26 −146.68 (12)
C1—Fe1—C12—C13 −105.10 (12) O2—K1—O5—C26 −64.62 (18)
C11—C12—C13—C14 57.8 (2) O3—K1—O5—C26 13.57 (12)
Fe1—C12—C13—C14 −22.33 (18) O4—K1—O5—C26 8.98 (11)
C12—C13—C14—C15 21.5 (2) C7—K1—O5—C26 90.30 (12)
C13—C14—C15—C16 −90.26 (19) C6—K1—O5—C26 99.05 (12)
C13—C14—C15—Fe1 −11.36 (18) C8—K1—O5—C26 106.87 (11)
C12—Fe1—C15—C16 116.31 (11) C5—K1—O5—C26 124.11 (12)
C11—Fe1—C15—C16 76.95 (10) O1—K1—O5—C33 −15.23 (11)
C3—Fe1—C15—C16 −68.72 (11) O6—K1—O5—C33 −9.79 (9)
C2—Fe1—C15—C16 −108.57 (11) O2—K1—O5—C33 72.27 (17)
C4—Fe1—C15—C16 −35.54 (15) O3—K1—O5—C33 150.46 (9)
C1—Fe1—C15—C16 −146.77 (10) O4—K1—O5—C33 145.87 (11)
C12—Fe1—C15—C14 −0.58 (12) C7—K1—O5—C33 −132.82 (10)
C11—Fe1—C15—C14 −39.94 (13) C6—K1—O5—C33 −124.07 (10)
C16—Fe1—C15—C14 −116.89 (16) C8—K1—O5—C33 −116.25 (10)
C3—Fe1—C15—C14 174.39 (12) C5—K1—O5—C33 −99.00 (10)
C2—Fe1—C15—C14 134.54 (12) O1—K1—O6—C31 22.09 (9)
C4—Fe1—C15—C14 −152.43 (12) O5—K1—O6—C31 −152.57 (10)
C1—Fe1—C15—C14 96.34 (13) O2—K1—O6—C31 43.99 (10)
C14—C15—C16—C17 3.0 (2) O3—K1—O6—C31 117.20 (13)
Fe1—C15—C16—C17 −102.06 (16) O4—K1—O6—C31 −175.47 (9)
C14—C15—C16—Fe1 105.03 (15) C7—K1—O6—C31 −73.40 (10)
C12—Fe1—C16—C15 −65.50 (11) C6—K1—O6—C31 −89.36 (10)
C11—Fe1—C16—C15 −102.89 (10) C8—K1—O6—C31 −46.19 (10)
C3—Fe1—C16—C15 119.79 (10) C5—K1—O6—C31 −79.46 (10)
C2—Fe1—C16—C15 83.71 (11) O1—K1—O6—C32 149.82 (10)
C4—Fe1—C16—C15 158.04 (10) O5—K1—O6—C32 −24.84 (9)
C1—Fe1—C16—C15 62.09 (16) O2—K1—O6—C32 171.72 (9)
C12—Fe1—C16—C17 55.10 (13) O3—K1—O6—C32 −115.07 (13)
C11—Fe1—C16—C17 17.71 (12) O4—K1—O6—C32 −47.74 (10)
C3—Fe1—C16—C17 −119.61 (13) C7—K1—O6—C32 54.33 (10)
C15—Fe1—C16—C17 120.60 (17) C6—K1—O6—C32 38.37 (10)
C2—Fe1—C16—C17 −155.69 (12) C8—K1—O6—C32 81.55 (10)
C4—Fe1—C16—C17 −81.36 (13) C5—K1—O6—C32 48.27 (9)
C1—Fe1—C16—C17 −177.31 (12) C30—O1—C19—C20 177.53 (13)
C15—C16—C17—C18 51.3 (2) K1—O1—C19—C20 33.64 (17)
Fe1—C16—C17—C18 −29.01 (19) C21—O2—C20—C19 −176.10 (13)
C12—C11—C18—C17 −91.52 (19) K1—O2—C20—C19 61.35 (13)
Fe1—C11—C18—C17 −12.05 (18) O1—C19—C20—O2 −63.86 (17)
C16—C17—C18—C11 26.9 (2) C20—O2—C21—C22 −178.76 (13)
C6—C7—K1—O1 −106.36 (10) K1—O2—C21—C22 −57.35 (14)
C8—C7—K1—O1 15.32 (12) C23—O3—C22—C21 −179.16 (13)
C6—C7—K1—O6 −39.48 (12) K1—O3—C22—C21 −45.48 (15)
C8—C7—K1—O6 82.20 (11) O2—C21—C22—O3 70.65 (16)
C6—C7—K1—O5 20.15 (11) C22—O3—C23—C24 −179.81 (14)
C8—C7—K1—O5 141.83 (10) K1—O3—C23—C24 46.89 (16)
C6—C7—K1—O2 −166.17 (10) C25—O4—C24—C23 −178.44 (13)
C8—C7—K1—O2 −44.50 (11) K1—O4—C24—C23 54.97 (15)
C6—C7—K1—O3 137.27 (11) O3—C23—C24—O4 −69.17 (17)
C8—C7—K1—O3 −101.06 (11) C24—O4—C25—C26 175.34 (13)
C6—C7—K1—O4 78.00 (10) K1—O4—C25—C26 −57.72 (14)
C8—C7—K1—O4 −160.32 (11) C33—O5—C26—C25 −178.84 (13)
C8—C7—K1—C6 121.68 (16) K1—O5—C26—C25 −40.89 (16)
C6—C7—K1—C8 −121.68 (16) O4—C25—C26—O5 65.82 (17)
C6—C7—K1—C5 −30.64 (9) C19—O1—C30—C31 171.64 (13)
C8—C7—K1—C5 91.03 (12) K1—O1—C30—C31 −43.07 (15)
C7—C6—K1—O1 83.65 (11) C32—O6—C31—C30 179.12 (13)
C5—C6—K1—O1 −38.36 (12) K1—O6—C31—C30 −53.02 (14)
C7—C6—K1—O6 146.61 (10) O1—C30—C31—O6 63.81 (16)
C5—C6—K1—O6 24.60 (11) C31—O6—C32—C33 −174.09 (13)
C7—C6—K1—O5 −159.10 (11) K1—O6—C32—C33 57.49 (13)
C5—C6—K1—O5 78.89 (10) C26—O5—C33—C32 −179.00 (13)
C7—C6—K1—O2 16.05 (12) K1—O5—C33—C32 41.47 (14)
C5—C6—K1—O2 −105.96 (11) O6—C32—C33—O5 −66.62 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2674).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brennessel, W. W. (2009). PhD dissertation, University of Minnesota, Minneapolis, MN, USA.
  3. Brennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076–9094. [DOI] [PubMed]
  4. Brennessel, W. W., Jilek, R. E. & Ellis, J. E. (2007). Angew. Chem. Int. Ed. 46, 6132–6136. [DOI] [PubMed]
  5. Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268–7271. [DOI] [PubMed]
  6. Bruker (2003). SAINT and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  7. Jonas, K. (1979). US Patent No. 4 169 845.
  8. Jonas, K. (1981). Adv. Organomet. Chem. 19, 97–122.
  9. Jonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520–537.
  10. Jonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550–551.
  11. Milun, M., Sobotka, Ž. & Trinajstić, N. (1972). J. Org. Chem. 37, 139–141.
  12. Schnökelborg, E.-M., Khusniyarov, M. M., de Bruin, B., Hartl, F., Langer, T., Eul, M., Schulz, S., Pöttgen, R. & Wolf, R. (2012). Inorg. Chem. 51, 6719–6730. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203704X/wm2674sup1.cif

e-68-m1230-sup1.cif (49.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203704X/wm2674Isup2.hkl

e-68-m1230-Isup2.hkl (323.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES