Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):m1235–m1236. doi: 10.1107/S1600536812036811

Bis(methanol-κO)bis­(1,2-diamino-2-hy­droxy­imino­ethanone oximato-κ2 N,N′)copper(II) bis­(oxamide dioxime) methanol disolvate

Daying Liu a, Ruihong Zhang a, Hui Hu a, Jing Qi a, Guangming Yang a,*
PMCID: PMC3470128  PMID: 23125572

Abstract

In the title compound, [Cu(C2H5N4O2)2(CH3OH)2]·2C2H6N4O2·2CH3OH, the CuII atom, lying on an inversion center, is coordinated by four N atoms from two 1,2-diamino-2-hy­droxy­imino­ethanone oximate anion and two O atoms from two methanol mol­ecules in a distorted octa­hedral geometry. The two uncoordinating oxamide dioxime mol­ecules, each lying on an inversion center, adopt a trans conformation. In the crystal, O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds link the complex mol­ecules and the oxamide dioxime and methanol mol­ecules.

Related literature  

For related structures, see: Bélombé et al. (2006); Belombe et al. (2007); Egharevba et al. (1982); Endres (1980); Endres & Schlicksupp (1980); Endres et al. (1983); Gunasekaran et al. (1995).graphic file with name e-68-m1235-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O

  • M r = 662.13

  • Triclinic, Inline graphic

  • a = 7.567 (3) Å

  • b = 8.874 (4) Å

  • c = 10.867 (5) Å

  • α = 92.046 (4)°

  • β = 103.327 (9)°

  • γ = 104.957 (5)°

  • V = 682.5 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 113 K

  • 0.28 × 0.24 × 0.22 mm

Data collection  

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) T min = 0.790, T max = 0.829

  • 7216 measured reflections

  • 3212 independent reflections

  • 2252 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.086

  • S = 0.99

  • 3212 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036811/hy2572sup1.cif

e-68-m1235-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036811/hy2572Isup2.hkl

e-68-m1235-Isup2.hkl (157.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036811/hy2572Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.96 2.737 (3) 154
O3—H3⋯O5ii 0.84 1.92 2.744 (3) 166
O4—H4⋯O1iii 0.84 1.79 2.621 (3) 169
O5—H5⋯O1iv 0.81 (2) 1.87 (3) 2.657 (3) 164 (2)
O6—H6⋯O5v 0.79 (3) 1.94 (3) 2.721 (3) 173 (3)
N3—H3A⋯N7vi 0.88 2.50 3.195 (3) 136
N3—H3B⋯O6vii 0.88 2.32 3.167 (3) 162
N4—H4A⋯O4viii 0.88 2.35 3.112 (3) 145
N4—H4B⋯O6vii 0.88 2.00 2.878 (3) 172
N6—H6A⋯O3ix 0.88 2.26 3.097 (3) 159
N6—H6B⋯N7vii 0.88 2.19 3.007 (3) 155
N8—H8A⋯O4ix 0.88 2.20 3.043 (3) 159
N8—H8B⋯N5x 0.88 2.21 3.031 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20941004, 21071084 and 90922032) and the MOE (IRT-0927), Tianjin Key Laboratory of Metal and Mol­ecule Based Material Chemistry.

supplementary crystallographic information

Comment

Owing to the variety of structures and unique properties, transition metal complexes of oxamide oxime (diaminoglyoxime, oaoH2) are of great interest. So far, most of the published work concerns 4-coordinated transition metal oxamide oximate complexs (Endres, 1980; Endres & Schlicksupp, 1980; Endres et al., 1983). The 6-coordinated transition metal oxamide oximate complexes have not been reported hitherto (Bélombé et al., 2006; Belombe et al., 2007; Egharevba et al., 1982). We used oxamide oxime as ligands (Gunasekaran et al., 1995) and obtained green crystals of the title compound from a methanol solution.

In the title compound, the CuII atom, lying on an inversion center, is surrounded in an octahedral environment defined by four N atoms from two oaoH ligands and two O atoms from two methanol molecules (Fig. 1). The methanol molecules are weakly coordinated to the Cu atom with a Cu—O distance of 2.797 (2) Å. In the crystal, O—H···O, N—H···O and N—H···N hydrogen bonds (Table 1) link the complex molecules and the oxamide oxime and methanol molecules.

Experimental

A methanol solution (10 ml) of copper acetate (0.1 mmol) was added dropwise to a methanol solution (10 ml) of oxamide oxime (0.1 mmol). The title compound was obtained as green crystals by slow evaporation of the filtrate in air at room temperature 5 days later. Analysis, calculated for C12H38CuN16O12: C 21.77, H 5.78, N 33.85, O 29.00%; found: C 21.79, H 5.76, N 33.88, O 29.02%.

Refinement

H atoms of methanol molecules were located from a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98, N—H = 0.88 and O—H = 0.84 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,N,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, 2-z; (ii) -x, 2-y, 1-z; (iii) 1-x, 1-y, 1-z.]

Crystal data

[Cu(C2H5N4O2)2(CH4O)2]·2C2H6N4O2·2CH4O Z = 1
Mr = 662.13 F(000) = 347
Triclinic, P1 Dx = 1.611 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.567 (3) Å Cell parameters from 2266 reflections
b = 8.874 (4) Å θ = 1.9–27.9°
c = 10.867 (5) Å µ = 0.89 mm1
α = 92.046 (4)° T = 113 K
β = 103.327 (9)° Block, green
γ = 104.957 (5)° 0.28 × 0.24 × 0.22 mm
V = 682.5 (5) Å3

Data collection

Rigaku Saturn724 CCD diffractometer 3212 independent reflections
Radiation source: rotating anode 2252 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.044
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 1.9°
ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) k = −11→11
Tmin = 0.790, Tmax = 0.829 l = −11→14
7216 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0231P)2] where P = (Fo2 + 2Fc2)/3
3212 reflections (Δ/σ)max = 0.001
198 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2733 (3) 0.1538 (3) 1.0896 (2) 0.0102 (5)
C2 0.2003 (3) 0.1293 (3) 0.9482 (2) 0.0102 (5)
C3 0.0546 (3) 0.9542 (3) 0.47271 (19) 0.0089 (5)
C4 0.5721 (3) 0.4615 (3) 0.53280 (19) 0.0092 (5)
C5 0.6807 (3) 0.4989 (3) 0.2349 (2) 0.0207 (6)
H5A 0.7195 0.5685 0.3141 0.031*
H5B 0.5433 0.4548 0.2126 0.031*
H5C 0.7183 0.5586 0.1666 0.031*
C6 0.7357 (4) 0.3711 (3) 0.9294 (2) 0.0317 (7)
H6C 0.7999 0.4807 0.9621 0.048*
H6D 0.5989 0.3535 0.9151 0.048*
H6E 0.7658 0.3478 0.8490 0.048*
Cu1 0.5000 0.0000 1.0000 0.01296 (13)
N1 0.3058 (2) 0.0743 (2) 0.89207 (16) 0.0131 (4)
N2 0.4170 (2) 0.0981 (2) 1.12976 (16) 0.0105 (4)
N3 0.1956 (2) 0.2296 (2) 1.16254 (18) 0.0165 (5)
H3A 0.2423 0.2452 1.2454 0.020*
H3B 0.0982 0.2636 1.1274 0.020*
N4 0.0410 (2) 0.1635 (2) 0.89006 (17) 0.0163 (5)
H4A 0.0011 0.1485 0.8067 0.020*
H4B −0.0236 0.2010 0.9353 0.020*
N5 0.1797 (2) 1.0348 (2) 0.41876 (16) 0.0100 (4)
N6 0.0166 (3) 0.7998 (2) 0.48310 (18) 0.0168 (5)
H6A 0.0792 0.7436 0.4517 0.020*
H6B −0.0710 0.7546 0.5214 0.020*
N7 0.7401 (2) 0.5552 (2) 0.58021 (17) 0.0118 (4)
N8 0.5201 (2) 0.3067 (2) 0.53953 (18) 0.0172 (5)
H8A 0.6030 0.2596 0.5788 0.021*
H8B 0.4030 0.2519 0.5047 0.021*
O1 0.50028 (19) 0.11732 (19) 1.25853 (13) 0.0127 (4)
O2 0.2404 (2) 0.0421 (2) 0.76012 (14) 0.0200 (4)
H2 0.3155 0.0041 0.7315 0.030*
O3 0.86131 (19) 0.46482 (19) 0.63897 (15) 0.0158 (4)
H3 0.9731 0.5217 0.6610 0.024*
O4 0.2651 (2) 0.93020 (19) 0.36628 (14) 0.0130 (4)
H4 0.3493 0.9817 0.3336 0.019*
O5 0.7699 (2) 0.3745 (2) 0.25156 (15) 0.0168 (4)
H5 0.688 (3) 0.305 (3) 0.267 (2) 0.025*
O6 0.7980 (2) 0.2702 (2) 1.02027 (16) 0.0238 (5)
H6 0.791 (4) 0.308 (3) 1.085 (3) 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0102 (11) 0.0089 (13) 0.0107 (12) −0.0007 (10) 0.0048 (9) 0.0005 (9)
C2 0.0085 (11) 0.0089 (13) 0.0121 (12) −0.0014 (10) 0.0041 (9) 0.0038 (9)
C3 0.0072 (11) 0.0099 (13) 0.0082 (11) 0.0025 (10) −0.0006 (9) 0.0002 (9)
C4 0.0116 (11) 0.0100 (13) 0.0073 (11) 0.0026 (10) 0.0054 (9) 0.0003 (9)
C5 0.0196 (13) 0.0204 (16) 0.0233 (14) 0.0076 (12) 0.0047 (11) 0.0038 (11)
C6 0.0400 (17) 0.0313 (19) 0.0320 (17) 0.0188 (15) 0.0132 (13) 0.0151 (14)
Cu1 0.0131 (2) 0.0178 (3) 0.0095 (2) 0.00752 (19) 0.00211 (16) 0.00014 (17)
N1 0.0129 (10) 0.0201 (13) 0.0062 (10) 0.0060 (9) 0.0005 (8) 0.0006 (8)
N2 0.0082 (9) 0.0146 (11) 0.0079 (10) 0.0026 (8) 0.0010 (7) 0.0004 (8)
N3 0.0149 (10) 0.0232 (13) 0.0136 (11) 0.0109 (10) 0.0019 (8) −0.0016 (9)
N4 0.0150 (10) 0.0236 (13) 0.0110 (10) 0.0086 (10) 0.0013 (8) −0.0006 (9)
N5 0.0102 (9) 0.0090 (11) 0.0126 (10) 0.0047 (8) 0.0038 (8) 0.0002 (8)
N6 0.0185 (11) 0.0108 (12) 0.0279 (12) 0.0046 (9) 0.0177 (9) 0.0049 (9)
N7 0.0083 (9) 0.0109 (11) 0.0171 (10) 0.0055 (8) 0.0017 (8) 0.0025 (8)
N8 0.0085 (9) 0.0082 (11) 0.0307 (12) 0.0021 (9) −0.0032 (8) 0.0016 (9)
O1 0.0122 (8) 0.0186 (10) 0.0067 (8) 0.0030 (7) 0.0025 (6) 0.0010 (7)
O2 0.0206 (9) 0.0349 (12) 0.0080 (8) 0.0158 (9) 0.0013 (7) −0.0009 (8)
O3 0.0085 (8) 0.0121 (10) 0.0238 (9) 0.0039 (7) −0.0030 (7) 0.0029 (7)
O4 0.0143 (8) 0.0118 (9) 0.0185 (9) 0.0053 (7) 0.0131 (7) 0.0032 (7)
O5 0.0125 (9) 0.0142 (11) 0.0210 (10) −0.0002 (8) 0.0031 (7) 0.0030 (8)
O6 0.0330 (10) 0.0288 (12) 0.0191 (10) 0.0202 (9) 0.0114 (8) 0.0069 (8)

Geometric parameters (Å, º)

C1—N2 1.300 (3) Cu1—N2iii 1.9349 (18)
C1—N3 1.344 (3) Cu1—N2 1.9349 (18)
C1—C2 1.496 (3) Cu1—O6 2.797 (2)
C2—N1 1.285 (3) N1—O2 1.397 (2)
C2—N4 1.340 (3) N2—O1 1.380 (2)
C3—N5 1.299 (3) N3—H3A 0.8800
C3—N6 1.340 (3) N3—H3B 0.8800
C3—C3i 1.494 (4) N4—H4A 0.8800
C4—N7 1.302 (3) N4—H4B 0.8800
C4—N8 1.337 (3) N5—O4 1.430 (2)
C4—C4ii 1.493 (4) N6—H6A 0.8800
C5—O5 1.431 (3) N6—H6B 0.8800
C5—H5A 0.9800 N7—O3 1.428 (2)
C5—H5B 0.9800 N8—H8A 0.8800
C5—H5C 0.9800 N8—H8B 0.8800
C6—O6 1.437 (3) O2—H2 0.8400
C6—H6C 0.9800 O3—H3 0.8400
C6—H6D 0.9800 O4—H4 0.8400
C6—H6E 0.9800 O5—H5 0.81 (3)
Cu1—N1iii 1.9314 (18) O6—H6 0.79 (2)
Cu1—N1 1.9314 (18)
N2—C1—N3 125.9 (2) N1—Cu1—O6 97.31 (8)
N2—C1—C2 112.90 (18) N2iii—Cu1—O6 90.37 (7)
N3—C1—C2 121.17 (19) N2—Cu1—O6 89.63 (7)
N1—C2—N4 125.4 (2) C2—N1—O2 115.67 (16)
N1—C2—C1 112.98 (18) C2—N1—Cu1 116.25 (15)
N4—C2—C1 121.63 (19) O2—N1—Cu1 126.33 (13)
N5—C3—N6 126.10 (19) C1—N2—O1 118.35 (17)
N5—C3—C3i 115.4 (3) C1—N2—Cu1 115.95 (15)
N6—C3—C3i 118.5 (3) O1—N2—Cu1 125.67 (13)
N7—C4—N8 125.9 (2) C1—N3—H3A 120.0
N7—C4—C4ii 115.2 (3) C1—N3—H3B 120.0
N8—C4—C4ii 118.8 (2) H3A—N3—H3B 120.0
O5—C5—H5A 109.5 C2—N4—H4A 120.0
O5—C5—H5B 109.5 C2—N4—H4B 120.0
H5A—C5—H5B 109.5 H4A—N4—H4B 120.0
O5—C5—H5C 109.5 C3—N5—O4 108.74 (18)
H5A—C5—H5C 109.5 C3—N6—H6A 120.0
H5B—C5—H5C 109.5 C3—N6—H6B 120.0
O6—C6—H6C 109.5 H6A—N6—H6B 120.0
O6—C6—H6D 109.5 C4—N7—O3 108.65 (19)
H6C—C6—H6D 109.5 C4—N8—H8A 120.0
O6—C6—H6E 109.5 C4—N8—H8B 120.0
H6C—C6—H6E 109.5 H8A—N8—H8B 120.0
H6D—C6—H6E 109.5 N1—O2—H2 109.5
N1iii—Cu1—N1 179.999 (1) N7—O3—H3 109.5
N1iii—Cu1—N2iii 80.90 (8) N5—O4—H4 109.5
N1—Cu1—N2iii 99.10 (8) C5—O5—H5 101.6 (18)
N1iii—Cu1—N2 99.10 (8) C6—O6—Cu1 108.13 (15)
N1—Cu1—N2 80.90 (8) C6—O6—H6 104 (2)
N2iii—Cu1—N2 179.999 (1) Cu1—O6—H6 97 (2)
N1iii—Cu1—O6 82.69 (8)
N2—C1—C2—N1 −7.5 (3) N3—C1—N2—Cu1 −178.33 (18)
N3—C1—C2—N1 171.1 (2) C2—C1—N2—Cu1 0.2 (3)
N2—C1—C2—N4 172.8 (2) N1iii—Cu1—N2—C1 −175.60 (18)
N3—C1—C2—N4 −8.6 (4) N1—Cu1—N2—C1 4.40 (18)
N4—C2—N1—O2 −3.1 (4) O6—Cu1—N2—C1 101.86 (18)
C1—C2—N1—O2 177.20 (19) N1iii—Cu1—N2—O1 6.43 (18)
N4—C2—N1—Cu1 −168.98 (19) N1—Cu1—N2—O1 −173.57 (18)
C1—C2—N1—Cu1 11.3 (3) O6—Cu1—N2—O1 −76.10 (17)
N2iii—Cu1—N1—C2 171.00 (17) N6—C3—N5—O4 2.8 (3)
N2—Cu1—N1—C2 −9.00 (17) C3i—C3—N5—O4 −177.3 (2)
O6—Cu1—N1—C2 −97.45 (18) N8—C4—N7—O3 1.0 (3)
N2iii—Cu1—N1—O2 6.80 (19) C4ii—C4—N7—O3 −179.8 (2)
N2—Cu1—N1—O2 −173.20 (19) N1iii—Cu1—O6—C6 169.14 (15)
O6—Cu1—N1—O2 98.35 (17) N1—Cu1—O6—C6 −10.87 (15)
N3—C1—N2—O1 −0.2 (4) N2iii—Cu1—O6—C6 88.36 (15)
C2—C1—N2—O1 178.31 (17) N2—Cu1—O6—C6 −91.64 (15)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1iii 0.84 1.96 2.737 (3) 154
O3—H3···O5iv 0.84 1.92 2.744 (3) 166
O4—H4···O1v 0.84 1.79 2.621 (3) 169
O5—H5···O1vi 0.81 (2) 1.87 (3) 2.657 (3) 164 (2)
O6—H6···O5vii 0.79 (3) 1.94 (3) 2.721 (3) 173 (3)
N3—H3A···N7viii 0.88 2.50 3.195 (3) 136
N3—H3B···O6ix 0.88 2.32 3.167 (3) 162
N4—H4A···O4x 0.88 2.35 3.112 (3) 145
N4—H4B···O6ix 0.88 2.00 2.878 (3) 172
N6—H6A···O3ii 0.88 2.26 3.097 (3) 159
N6—H6B···N7ix 0.88 2.19 3.007 (3) 155
N8—H8A···O4ii 0.88 2.20 3.043 (3) 159
N8—H8B···N5xi 0.88 2.21 3.031 (3) 154

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z−1; (vi) x, y, z−1; (vii) x, y, z+1; (viii) −x+1, −y+1, −z+2; (ix) x−1, y, z; (x) −x, −y+1, −z+1; (xi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2572).

References

  1. Belombe, M. M., Nenwa, J., Bebga, G., Fokwa, B. P. T. & Dronskowski, R. (2007). Acta Cryst. E63, m2037–m2038. [DOI] [PMC free article] [PubMed]
  2. Bélombé, M., Nenwa, J., Kammoe, A. L. & Poudeu, P. F. P. (2006). Acta Cryst. E62, m2583–m2585.
  3. Egharevba, G. O., Mégnamisi-Bélombé, M., Endres, H. & Rossato, E. (1982). Acta Cryst. B38, 2901–2903.
  4. Endres, H. (1980). Acta Cryst. B36, 57–60.
  5. Endres, H. & Schlicksupp, L. (1980). Acta Cryst. B36, 715–716.
  6. Endres, H., Genc, N. & Nöthe, D. (1983). Acta Cryst. C39, 701–703.
  7. Gunasekaran, A., Jayachandran, T., Boyer, J. H. & Trudell, M. L. (1995). J. Heterocycl. Chem. 32, 1405–1407.
  8. Rigaku (2009). CrystalClear Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036811/hy2572sup1.cif

e-68-m1235-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036811/hy2572Isup2.hkl

e-68-m1235-Isup2.hkl (157.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036811/hy2572Isup4.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES