Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):m1244. doi: 10.1107/S1600536812035775

catena-Poly[[dichloridomercury(II)]-μ-{N-[(E)-pyridin-2-yl­methyl­idene-κN]pyridin-3-amine-κ2 N 1:N 3}]

Ali Mahmoudi a,*, Saeed Dehghanpour b, Leila Najafi a, Mohammad Khalafbeigi a
PMCID: PMC3470133  PMID: 23125577

Abstract

In the title coordination polymer, [HgCl2(C11H9N3)]n, the HgII ion is coordinated by three N atoms from two N-[(E)-pyridin-2-yl­methyl­idene]pyridin-3-amine (L) ligands and two chloride anions in a distorted trigonal–bipyramidal geometry. The two pyridine rings in L form a dihedral angle of 50.0 (2)°. L ligands bridge adjacent HgCl2 units into polymeric chains propagating in [010]. The crystal packing is further stabilized by weak inter­molecular C—H⋯Cl hydrogen bonds and π–π inter­actions between the pyridine rings, with a centroid–centroid separation of 3.529 (9) Å.

Related literature  

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei et al. (2000). For the synthesis of the ligand and the index of trigonality, see: Dehghanpour et al. (2012).graphic file with name e-68-m1244-scheme1.jpg

Experimental  

Crystal data  

  • [HgCl2(C11H9N3)]

  • M r = 454.70

  • Monoclinic, Inline graphic

  • a = 7.5645 (5) Å

  • b = 13.1057 (9) Å

  • c = 12.7017 (5) Å

  • β = 96.077 (4)°

  • V = 1252.15 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.70 mm−1

  • T = 150 K

  • 0.15 × 0.08 × 0.02 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.566, T max = 0.889

  • 8560 measured reflections

  • 2837 independent reflections

  • 2164 reflections with I > 2σ(I)

  • R int = 0.059

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.09

  • 2837 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 2.45 e Å−3

  • Δρmin = −3.10 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035775/cv5327sup1.cif

e-68-m1244-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035775/cv5327Isup2.hkl

e-68-m1244-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Cl2i 0.95 2.82 3.700 (8) 154
C6—H6A⋯Cl2i 0.95 2.79 3.666 (7) 154
C10—H10A⋯Cl2ii 0.95 2.83 3.545 (8) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Islamic Azad University University Research Councils for partial support of this work.

supplementary crystallographic information

Comment

Many studies has recently been focused on coordination polymers due to their useful properties applicable to catalysis, chirality, conductivity, luminescence (Moulton & Zaworotko, 2001). Nitrogen heterocyclic ligands have been employed in the design and synthesis of many novel coordination polymers (Fei et al., 2000). Herewith we report the synthesis and crystal structure of a novel Hg(II) complex based on pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title polymeric complex, consisting of one Hg(II) ion, one PyPy ligand and two chloride anions, is shown in Fig. 1. The coordination geometry around Hg(II) is a distorted trigonal–bipyramidal geometry, with the Hg (II) ion being surrounded by two Cl, two N atoms from one PyPy ligand and one N atom from adjacent PyPy ligand. The structural index τ, (Dehghanpour et al., 2012) which is a measure of trigonal distortion, is 0.59 for the title structure indicating a distorted trigonal–bipyramidal environment of Hg(II).

The interplanar angles between the chelate ring (N1—C5—C6—N2) and pyridine ring (N1—C1—C2—C3—C4—C5) is 0.92 (3)° and interplanar angles between the two pyridine rings in the ligand (N1—C1—C2—C3—C4—C5 ring and N3—C11—C7—C8—C9—C10 ring) is 50.0 (2)°. Each PyPy ligand has been chelate HgCl2 unit (via N, N' atoms) and also bridge to another HgCl2 unit (with N" atom), resulting into a chain propagated in [010].

These chains interact viaπ–π interactions between adjacent pyridine ringe (N3/C7—C11) related by inversion center, and the distance between their centroids is equal to 3.529 (9) Å. The C—H···Cl interactions (Table 1) are also observed in the crystal structure.

Experimental

The title complex was prepared by the reaction of HgCl2 (27.1 mg, 0.1 mmol) and pyridin-3-ylpyridin-2-ylmethyleneamine (18.3 mg, 0.1 mmol) in 25 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and yellow crystals of the title compound suitable for X-ray analysis precipitated within few days.

Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å, and included in the refinement in a riding-motion approximation, with Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [symmetry codes: (a) 1/2 - x, -1/2 + y, 1/2 - z; (b) 1/2 - x, -1/2 + y, 1/2 - z].

Crystal data

[HgCl2(C11H9N3)] F(000) = 840
Mr = 454.70 Dx = 2.412 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8560 reflections
a = 7.5645 (5) Å θ = 3.0–27.5°
b = 13.1057 (9) Å µ = 12.70 mm1
c = 12.7017 (5) Å T = 150 K
β = 96.077 (4)° Plate, yellow
V = 1252.15 (13) Å3 0.15 × 0.08 × 0.02 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2837 independent reflections
Radiation source: fine-focus sealed tube 2164 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.059
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ scans and ω scans with κ offsets h = −9→9
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −15→16
Tmin = 0.566, Tmax = 0.889 l = −16→16
8560 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0613P)2] where P = (Fo2 + 2Fc2)/3
2837 reflections (Δ/σ)max = 0.002
154 parameters Δρmax = 2.45 e Å3
0 restraints Δρmin = −3.10 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.26173 (3) 0.14916 (2) 0.252995 (19) 0.02692 (14)
Cl1 −0.0045 (3) 0.16859 (19) 0.13060 (18) 0.0509 (6)
Cl2 0.5101 (2) 0.27229 (14) 0.25673 (14) 0.0296 (4)
N1 0.2620 (7) 0.0445 (4) 0.4086 (4) 0.0249 (13)
N2 0.1391 (8) 0.2435 (5) 0.4036 (4) 0.0295 (14)
N3 0.0833 (8) 0.5128 (4) 0.3314 (4) 0.0261 (13)
C1 0.3228 (9) −0.0520 (6) 0.4171 (5) 0.0275 (16)
H1A 0.3673 −0.0821 0.3572 0.033*
C2 0.3237 (10) −0.1096 (6) 0.5084 (6) 0.0316 (18)
H2A 0.3702 −0.1770 0.5113 0.038*
C3 0.2552 (9) −0.0670 (6) 0.5963 (5) 0.0293 (16)
H3A 0.2501 −0.1055 0.6592 0.035*
C4 0.1954 (9) 0.0319 (6) 0.5895 (6) 0.0272 (16)
H4A 0.1513 0.0636 0.6487 0.033*
C5 0.1999 (9) 0.0854 (6) 0.4950 (5) 0.0257 (16)
C6 0.1330 (9) 0.1915 (6) 0.4877 (5) 0.0284 (16)
H6A 0.0849 0.2213 0.5467 0.034*
C7 0.0619 (11) 0.3439 (5) 0.3945 (6) 0.0299 (17)
C8 −0.1065 (10) 0.3615 (6) 0.4214 (6) 0.0308 (17)
H8A −0.1701 0.3091 0.4527 0.037*
C9 −0.1826 (10) 0.4570 (6) 0.4022 (6) 0.0319 (18)
H9A −0.2995 0.4714 0.4191 0.038*
C10 −0.0815 (9) 0.5309 (6) 0.3574 (5) 0.0254 (16)
H10A −0.1311 0.5969 0.3447 0.030*
C11 0.1534 (10) 0.4210 (6) 0.3503 (5) 0.0284 (16)
H11A 0.2703 0.4080 0.3328 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.02627 (19) 0.0269 (2) 0.0285 (2) −0.00027 (12) 0.00688 (13) −0.00040 (11)
Cl1 0.0333 (12) 0.0627 (16) 0.0536 (14) −0.0076 (10) −0.0097 (9) 0.0062 (11)
Cl2 0.0272 (9) 0.0266 (10) 0.0357 (9) −0.0027 (7) 0.0071 (7) −0.0009 (8)
N1 0.020 (3) 0.028 (4) 0.027 (3) −0.006 (3) 0.006 (2) −0.001 (3)
N2 0.027 (3) 0.035 (4) 0.026 (3) −0.008 (3) 0.001 (2) 0.001 (3)
N3 0.030 (3) 0.022 (3) 0.027 (3) 0.003 (3) 0.007 (2) −0.003 (3)
C1 0.022 (4) 0.030 (4) 0.031 (4) 0.000 (3) 0.006 (3) −0.008 (3)
C2 0.020 (4) 0.032 (5) 0.041 (4) −0.001 (3) −0.005 (3) 0.004 (3)
C3 0.027 (4) 0.033 (4) 0.028 (4) 0.000 (3) 0.001 (3) −0.001 (3)
C4 0.023 (4) 0.033 (5) 0.026 (4) −0.003 (3) 0.002 (3) 0.002 (3)
C5 0.019 (4) 0.029 (4) 0.029 (4) 0.001 (3) 0.002 (3) −0.001 (3)
C6 0.019 (4) 0.038 (5) 0.029 (4) −0.001 (3) 0.003 (3) −0.002 (4)
C7 0.038 (4) 0.027 (4) 0.025 (4) 0.004 (3) 0.007 (3) 0.003 (3)
C8 0.031 (4) 0.033 (5) 0.028 (4) −0.006 (3) 0.005 (3) −0.002 (3)
C9 0.023 (4) 0.042 (5) 0.031 (4) −0.001 (3) 0.006 (3) −0.001 (4)
C10 0.028 (4) 0.029 (4) 0.018 (3) 0.004 (3) −0.004 (3) 0.002 (3)
C11 0.031 (4) 0.025 (4) 0.030 (4) 0.004 (3) 0.011 (3) 0.000 (3)

Geometric parameters (Å, º)

Hg1—N1 2.406 (5) C2—H2A 0.9500
Hg1—Cl1 2.424 (2) C3—C4 1.373 (11)
Hg1—N3i 2.445 (6) C3—H3A 0.9500
Hg1—Cl2 2.4732 (17) C4—C5 1.393 (10)
Hg1—N2 2.535 (6) C4—H4A 0.9500
N1—C1 1.347 (9) C5—C6 1.480 (11)
N1—C5 1.349 (8) C6—H6A 0.9500
N2—C6 1.272 (9) C7—C8 1.373 (11)
N2—C7 1.438 (9) C7—C11 1.378 (10)
N3—C11 1.327 (9) C8—C9 1.388 (11)
N3—C10 1.345 (8) C8—H8A 0.9500
N3—Hg1ii 2.445 (6) C9—C10 1.393 (10)
C1—C2 1.384 (10) C9—H9A 0.9500
C1—H1A 0.9500 C10—H10A 0.9500
C2—C3 1.395 (10) C11—H11A 0.9500
N1—Hg1—Cl1 121.03 (14) C4—C3—H3A 120.8
N1—Hg1—N3i 89.13 (19) C2—C3—H3A 120.8
Cl1—Hg1—N3i 101.53 (15) C3—C4—C5 119.4 (7)
N1—Hg1—Cl2 114.93 (14) C3—C4—H4A 120.3
Cl1—Hg1—Cl2 121.44 (7) C5—C4—H4A 120.3
N3i—Hg1—Cl2 94.98 (14) N1—C5—C4 122.9 (7)
N1—Hg1—N2 68.1 (2) N1—C5—C6 118.0 (6)
Cl1—Hg1—N2 95.00 (15) C4—C5—C6 119.1 (6)
N3i—Hg1—N2 156.61 (19) N2—C6—C5 120.9 (6)
Cl2—Hg1—N2 90.30 (14) N2—C6—H6A 119.6
C1—N1—C5 117.0 (6) C5—C6—H6A 119.6
C1—N1—Hg1 124.9 (4) C8—C7—C11 119.8 (7)
C5—N1—Hg1 118.2 (5) C8—C7—N2 120.9 (7)
C6—N2—C7 120.5 (6) C11—C7—N2 119.1 (6)
C6—N2—Hg1 114.9 (5) C7—C8—C9 119.2 (7)
C7—N2—Hg1 124.3 (4) C7—C8—H8A 120.4
C11—N3—C10 118.6 (6) C9—C8—H8A 120.4
C11—N3—Hg1ii 122.8 (5) C8—C9—C10 117.6 (7)
C10—N3—Hg1ii 118.6 (5) C8—C9—H9A 121.2
N1—C1—C2 123.4 (6) C10—C9—H9A 121.2
N1—C1—H1A 118.3 N3—C10—C9 122.8 (7)
C2—C1—H1A 118.3 N3—C10—H10A 118.6
C1—C2—C3 118.9 (7) C9—C10—H10A 118.6
C1—C2—H2A 120.6 N3—C11—C7 122.1 (7)
C3—C2—H2A 120.6 N3—C11—H11A 119.0
C4—C3—C2 118.4 (7) C7—C11—H11A 119.0

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···Cl2iii 0.95 2.82 3.700 (8) 154
C6—H6A···Cl2iii 0.95 2.79 3.666 (7) 154
C10—H10A···Cl2ii 0.95 2.83 3.545 (8) 132

Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5327).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Dehghanpour, S., Asadizadeh, S. & Assoud, J. (2012). Z. Anorg. Allg. Chem. 638, 861–867.
  4. Fei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805–811.
  5. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. [DOI] [PubMed]
  6. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. New York: Academic press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035775/cv5327sup1.cif

e-68-m1244-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035775/cv5327Isup2.hkl

e-68-m1244-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES