Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):m1245. doi: 10.1107/S1600536812035982

Tetra­bromidobis(dicyclo­hexyl­phosphane-κP)digallium(GaGa)

Dennis H Mayo a, Yang Peng a, Peter Zavalij a, Kit H Bowen b, Bryan W Eichhorn a,*
PMCID: PMC3470134  PMID: 23125578

Abstract

The title compound, a GaII dimer, [Ga2Br4(C12H23P)2], was synthesized by reaction of GaBr(THF)n (THF is tetra­hydro­furan) with dicyclo­hexyl­phosphine in toluene. At 150 K the crystallographically centrosymmetric molecule exhibits disorder in which one of the two independent cyclo­hexyl groups is modelled over two sites in a 62 (1):38 (1) ratio. In d 6-benzene solution, the compound exhibits virtual C 2h symmetry as determined by 1H NMR. The coordination environment of the GaII atom is distorted tetrahedral.

Related literature  

For references related to the synthesis of the ‘GaBr’ precursor and to cluster formation, see: Schnoeckel (2010); Steiner et al. (2004). For other Ga—Ga containing compounds, see: Baker et al. (2003) (the analogous digallium tetra­iodide compound); Uhl et al. (1989) [the first-reported Ga(II) dimer compound].graphic file with name e-68-m1245-scheme1.jpg

Experimental  

Crystal data  

  • [Ga2Br4(C12H23P)2]

  • M r = 855.63

  • Monoclinic, Inline graphic

  • a = 9.6095 (11) Å

  • b = 13.7083 (16) Å

  • c = 13.3305 (16) Å

  • β = 109.177 (2)°

  • V = 1658.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.55 mm−1

  • T = 150 K

  • 0.36 × 0.27 × 0.19 mm

Data collection  

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996) T min = 0.185, T max = 0.288

  • 24854 measured reflections

  • 4842 independent reflections

  • 4253 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.068

  • S = 1.00

  • 4842 reflections

  • 168 parameters

  • 60 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.88 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2010); software used to prepare material for publication: APEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035982/nk2174sup1.cif

e-68-m1245-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035982/nk2174Isup2.hkl

e-68-m1245-Isup2.hkl (237.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ga1—Br2 2.3612 (5)
Ga1—Br1 2.3807 (5)
Ga1—P1 2.4164 (7)
Ga1—Ga1i 2.4353 (6)
Br2—Ga1—Br1 107.306 (18)
Br2—Ga1—P1 101.11 (2)
Br1—Ga1—P1 98.25 (2)
Br2—Ga1—Ga1i 114.05 (2)
Br1—Ga1—Ga1i 115.13 (2)
P1—Ga1—Ga1i 118.93 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Air Force Office of Scientific Research (grant No. FA9550-11-1-0171), the NSF (grant No. 013367-001) and the DTRA for financial support. DHM acknowledges the ASEE Science, Mathematics, and Research for Transformation (SMART) Fellowship program for support. KHB thanks the AFOSR for support.

supplementary crystallographic information

Comment

GaBr(THF)n was generated in a modified metal halide co-condensation reactor (Schnoeckel, 2010) at 900 K and co-condensed with a mixture of toluene:THF (3:1) at 77 K. Upon warming in the presence of dicyclohexylphosphine, the dimeric Ga2Br4(PHCy2)2 forms via a disproportionation reaction (Equation 1). This reaction is similar to the disproportionation of `GaI' in the presence of dicyclohexylphosphine (Baker et al., 2003).

4 GaBr(THF) + 4 Cy2PH → Ga2Br4(PHCy2)2 + 2 Ga (Eq. 1)

Ga2Br4(PHCy2)2 exhibits 1 symmetry in the solid state, with a Ga—Ga distance of 2.435 (1) Å, but virtual C2h symmetry in solution. The Ga—Br1 and Ga—Br2 distances are 2.3612 (5) and 2.3807 (5) Å, respectively; the Ga—P bond is 2.415 (3) Å. The Br—Ga—Br angle measures 107.30 (2)°.

The overall structure of Ga2Br4(PHCy2)2 is in close agreement with that of the Ga2I4(PHCy2)2 analogue reported by Baker et al. (2003). In Ga2I4(PHCy2)2 the Ga—Ga bond is 2.437 (1) Å; the Ga—P bonds average 2.424 (2) Å. The I—Ga—I angle in the iodo analogue is 110.07 (3)°.

The Ga—Ga distance in Ga2Br4(PHCy2)2 (2.435 (1) Å) is shorter than the 2.54 (1) Å Ga—Ga distance in the trigonal planar Ga(II) compound Ga2(CH(TMS)2)4 (Uhl et al. 1989). The Ga—Br distances in Ga2Br4(PHCy2)2 (2.370 (10) Å) are slightly shorter than the Ga—Br distances (2.4246 (22) and 2.4296 (27) Å) in the anionic [Ga51(PtBu2)14Br6]3- cluster (Steiner et al. 2004).

Experimental

Ga2Br4(PHCy2)2: Dicyclohexylphosphine (2.5 mmol, 5 g of a 10% w/w solution in hexanes) was dissolved in toluene (5 ml). The solution was cooled to -78 °C and a cold (-78 °C) solution of GaBr(THF)n (6.05 ml of a 380 mM solution in toluene:THF 3:1) was added. The resultant orange solution was stirred at -78 °C for 2 h, after which it was heated to 80 °C for 19 h. The resulting dark-brown solution was cooled to room temperature, the solvent removed in vacuo and the black residue dissolved in toluene (50 ml). The dark-brown solution was separated from the grey powdery residue via cannula filtration, concentrated, and cooled to -20 °C. After 7 d, colorless crystals of Ga2Br4(PHCy2)2 formed (40 mg, 0.047 mmol, 4% yield). 1H NMR (500 MHz, C6D6) δ (p.p.m.): 1.03–2.05 (44 H, Cy—H), 4.10 (dt, 2 H, 1 J(P—H) = 352 Hz, 3 J(H—H) = 5 Hz, P—H). 13C NMR (125 MHz) δ (p.p.m.): 25.5, 27.2, 30.3, 30.8, 31.1, 31.8. 31P NMR (201.6 MHz) δ (p.p.m.): -36.7 (d, J = 352 Hz).

Refinement

One of two symmetrically independent cyclohexyl groups (C11–C16) appeared to be split in two parts tilted from each other by about 8°. The disorder of this group was refined as following: the geometry of both parts was restrained to be similar; the atomic displacement parameters (adp) were set to be the same for the same atoms in both parts, while the adp for the one cyclohexyl group was restrained to rigid-body motions and the adp were restrained to reasonable anisotropy. Total number of restraints used was 60. The occupancy of both parts was refined to be in a 0.62 (1) to 0.38 (1) ratio. H atoms were treated by a mixture of independent and constrained refinement.

Figures

Fig. 1.

Fig. 1.

X-ray crystal structure of Ga2Br4(PHCy2)2 viewed along C2 axis. Bromine = brown, carbon = black, gallium = green, hydrogen = white, phosphorous = orange. Thermal ellipsoids shown at 50% probability; all non-phosphine hydrogen atoms removed for clarity. Non-labeled atoms are related to labeled atoms by inversion symmetry.

Crystal data

[Ga2Br4(C12H23P)2] F(000) = 844
Mr = 855.63 Dx = 1.713 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 12733 reflections
a = 9.6095 (11) Å θ = 2.7–30.5°
b = 13.7083 (16) Å µ = 6.55 mm1
c = 13.3305 (16) Å T = 150 K
β = 109.177 (2)° Prism, colourless
V = 1658.6 (3) Å3 0.36 × 0.27 × 0.19 mm
Z = 2

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 4842 independent reflections
Radiation source: fine-focus sealed tube 4253 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
Detector resolution: 8.333 pixels mm-1 θmax = 30.0°, θmin = 2.2°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −19→19
Tmin = 0.185, Tmax = 0.288 l = −18→18
24854 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.01P)2 + 4.865P], P = (max(Fo2,0) + 2Fc2)/3
4842 reflections (Δ/σ)max = 0.001
168 parameters Δρmax = 1.88 e Å3
60 restraints Δρmin = −0.94 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ga1 0.43950 (3) 0.06462 (2) 0.53291 (2) 0.02724 (7)
Br1 0.58862 (3) 0.20359 (2) 0.60235 (3) 0.04156 (8)
Br2 0.33747 (4) 0.01282 (3) 0.66273 (3) 0.04888 (9)
P1 0.23183 (7) 0.14796 (5) 0.40942 (5) 0.02762 (13)
H1 0.274 (4) 0.225 (2) 0.368 (3) 0.043 (9)*
C11 0.0946 (13) 0.1955 (10) 0.4656 (12) 0.0339 (18) 0.620 (13)
H11 0.0698 0.1412 0.5069 0.041* 0.620 (13)
C12 −0.0495 (10) 0.2268 (7) 0.3805 (7) 0.0453 (18) 0.620 (13)
H12A −0.0287 0.2777 0.3348 0.054* 0.620 (13)
H12B −0.0943 0.1702 0.3353 0.054* 0.620 (13)
C13 −0.1573 (10) 0.2667 (8) 0.4336 (8) 0.066 (2) 0.620 (13)
H13A −0.2484 0.2890 0.3782 0.080* 0.620 (13)
H13B −0.1844 0.2139 0.4743 0.080* 0.620 (13)
C14 −0.0905 (13) 0.3506 (7) 0.5072 (9) 0.071 (3) 0.620 (13)
H14A −0.0680 0.4049 0.4661 0.085* 0.620 (13)
H14B −0.1619 0.3745 0.5408 0.085* 0.620 (13)
C15 0.0478 (13) 0.3180 (11) 0.5913 (9) 0.076 (3) 0.620 (13)
H15A 0.0234 0.2671 0.6355 0.092* 0.620 (13)
H15B 0.0918 0.3739 0.6380 0.092* 0.620 (13)
C16 0.1608 (11) 0.2771 (13) 0.5433 (12) 0.0610 (18) 0.620 (13)
H16A 0.1945 0.3300 0.5063 0.073* 0.620 (13)
H16B 0.2475 0.2522 0.6009 0.073* 0.620 (13)
C11A 0.114 (2) 0.2078 (18) 0.475 (2) 0.0339 (18) 0.380 (13)
H11A 0.0753 0.1557 0.5109 0.041* 0.380 (13)
C12A −0.0197 (17) 0.2566 (12) 0.3935 (12) 0.0453 (18) 0.380 (13)
H12C 0.0143 0.3053 0.3518 0.054* 0.380 (13)
H12D −0.0788 0.2068 0.3438 0.054* 0.380 (13)
C13A −0.1153 (15) 0.3069 (13) 0.4503 (13) 0.066 (2) 0.380 (13)
H13C −0.1967 0.3420 0.3972 0.080* 0.380 (13)
H13D −0.1595 0.2568 0.4839 0.080* 0.380 (13)
C14A −0.030 (2) 0.3779 (12) 0.5336 (14) 0.071 (3) 0.380 (13)
H14C 0.0048 0.4325 0.4992 0.085* 0.380 (13)
H14D −0.0945 0.4051 0.5710 0.085* 0.380 (13)
C15A 0.100 (2) 0.3296 (19) 0.6123 (14) 0.076 (3) 0.380 (13)
H15C 0.0645 0.2810 0.6532 0.092* 0.380 (13)
H15D 0.1580 0.3792 0.6628 0.092* 0.380 (13)
C16A 0.2001 (18) 0.279 (2) 0.560 (2) 0.0610 (18) 0.380 (13)
H16C 0.2474 0.3281 0.5276 0.073* 0.380 (13)
H16D 0.2787 0.2429 0.6143 0.073* 0.380 (13)
C21 0.1299 (3) 0.0773 (2) 0.2924 (2) 0.0305 (5)
H21 0.0502 0.1198 0.2458 0.037*
C22 0.0573 (3) −0.0116 (2) 0.3232 (3) 0.0414 (7)
H22A 0.1338 −0.0552 0.3695 0.050*
H22B −0.0080 0.0095 0.3631 0.050*
C23 −0.0321 (4) −0.0665 (3) 0.2234 (3) 0.0564 (9)
H23A −0.0759 −0.1255 0.2437 0.068*
H23B −0.1135 −0.0245 0.1801 0.068*
C24 0.0637 (4) −0.0955 (3) 0.1588 (3) 0.0574 (10)
H24A 0.0021 −0.1279 0.0928 0.069*
H24B 0.1382 −0.1431 0.1997 0.069*
C25 0.1420 (4) −0.0083 (3) 0.1301 (3) 0.0539 (9)
H25A 0.0682 0.0356 0.0818 0.065*
H25B 0.2088 −0.0315 0.0922 0.065*
C26 0.2313 (3) 0.0484 (2) 0.2299 (2) 0.0384 (6)
H26A 0.3128 0.0073 0.2746 0.046*
H26B 0.2744 0.1076 0.2093 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ga1 0.02597 (13) 0.02897 (14) 0.02464 (13) 0.00414 (11) 0.00541 (10) −0.00146 (11)
Br1 0.04072 (16) 0.03471 (15) 0.04223 (16) −0.00386 (12) 0.00408 (13) −0.00738 (12)
Br2 0.04296 (17) 0.0654 (2) 0.04385 (18) 0.00912 (15) 0.02185 (14) 0.01749 (16)
P1 0.0278 (3) 0.0276 (3) 0.0266 (3) 0.0028 (2) 0.0077 (2) 0.0016 (2)
C11 0.036 (3) 0.033 (4) 0.035 (3) 0.011 (3) 0.014 (2) 0.005 (2)
C12 0.040 (4) 0.046 (5) 0.048 (3) 0.018 (3) 0.011 (3) 0.003 (3)
C13 0.052 (4) 0.075 (6) 0.076 (4) 0.035 (4) 0.026 (4) 0.008 (4)
C14 0.085 (7) 0.061 (5) 0.077 (6) 0.036 (5) 0.041 (5) −0.001 (4)
C15 0.085 (8) 0.083 (5) 0.062 (5) 0.032 (6) 0.027 (4) −0.023 (4)
C16 0.060 (5) 0.062 (3) 0.056 (5) 0.017 (5) 0.013 (4) −0.023 (3)
C11A 0.036 (3) 0.033 (4) 0.035 (3) 0.011 (3) 0.014 (2) 0.005 (2)
C12A 0.040 (4) 0.046 (5) 0.048 (3) 0.018 (3) 0.011 (3) 0.003 (3)
C13A 0.052 (4) 0.075 (6) 0.076 (4) 0.035 (4) 0.026 (4) 0.008 (4)
C14A 0.085 (7) 0.061 (5) 0.077 (6) 0.036 (5) 0.041 (5) −0.001 (4)
C15A 0.085 (8) 0.083 (5) 0.062 (5) 0.032 (6) 0.027 (4) −0.023 (4)
C16A 0.060 (5) 0.062 (3) 0.056 (5) 0.017 (5) 0.013 (4) −0.023 (3)
C21 0.0251 (11) 0.0354 (14) 0.0257 (12) 0.0027 (10) 0.0010 (9) 0.0005 (10)
C22 0.0356 (15) 0.0427 (17) 0.0425 (16) −0.0079 (13) 0.0084 (13) −0.0009 (13)
C23 0.0493 (19) 0.051 (2) 0.056 (2) −0.0158 (17) 0.0010 (17) −0.0079 (17)
C24 0.063 (2) 0.048 (2) 0.0420 (18) −0.0013 (17) −0.0084 (16) −0.0148 (16)
C25 0.057 (2) 0.071 (2) 0.0271 (15) 0.0003 (18) 0.0041 (14) −0.0121 (16)
C26 0.0348 (14) 0.0521 (18) 0.0259 (13) −0.0001 (13) 0.0068 (11) −0.0040 (12)

Geometric parameters (Å, º)

Ga1—Br2 2.3612 (5) C15—H15A 0.9900
Ga1—Br1 2.3807 (5) C15—H15B 0.9900
Ga1—P1 2.4164 (7) C16—H16A 0.9900
Ga1—Ga1i 2.4353 (6) C16—H16B 0.9900
P1—C21 1.824 (3) C21—C22 1.526 (4)
P1—C11A 1.83 (2) C21—C26 1.527 (4)
P1—C11 1.837 (13) C21—H21 1.0000
P1—H1 1.31 (3) C22—C23 1.523 (5)
C11—C16 1.516 (7) C22—H22A 0.9900
C11—C12 1.535 (6) C22—H22B 0.9900
C11—H11 1.0000 C23—C24 1.506 (6)
C12—C13 1.534 (7) C23—H23A 0.9900
C12—H12A 0.9900 C23—H23B 0.9900
C12—H12B 0.9900 C24—C25 1.527 (6)
C13—C14 1.512 (10) C24—H24A 0.9900
C13—H13A 0.9900 C24—H24B 0.9900
C13—H13B 0.9900 C25—C26 1.537 (4)
C14—C15 1.499 (9) C25—H25A 0.9900
C14—H14A 0.9900 C25—H25B 0.9900
C14—H14B 0.9900 C26—H26A 0.9900
C15—C16 1.536 (7) C26—H26B 0.9900
Br2—Ga1—Br1 107.306 (18) C11—C16—C15 111.0 (7)
Br2—Ga1—P1 101.11 (2) C11—C16—H16A 109.4
Br1—Ga1—P1 98.25 (2) C15—C16—H16A 109.4
Br2—Ga1—Ga1i 114.05 (2) C11—C16—H16B 109.4
Br1—Ga1—Ga1i 115.13 (2) C15—C16—H16B 109.4
P1—Ga1—Ga1i 118.93 (2) H16A—C16—H16B 108.0
C21—P1—C11 106.3 (4) C22—C21—C26 111.7 (3)
C21—P1—Ga1 115.00 (9) C22—C21—P1 111.0 (2)
C11—P1—Ga1 115.7 (4) C26—C21—P1 110.16 (19)
C21—P1—H1 102.5 (15) C22—C21—H21 107.9
C11—P1—H1 104.4 (16) C26—C21—H21 107.9
Ga1—P1—H1 111.6 (15) P1—C21—H21 107.9
C16—C11—C12 111.9 (5) C23—C22—C21 109.6 (3)
C16—C11—P1 110.1 (8) C23—C22—H22A 109.7
C12—C11—P1 113.1 (8) C21—C22—H22A 109.7
C16—C11—H11 107.1 C23—C22—H22B 109.7
C12—C11—H11 107.1 C21—C22—H22B 109.7
P1—C11—H11 107.1 H22A—C22—H22B 108.2
C13—C12—C11 110.0 (6) C24—C23—C22 110.7 (3)
C13—C12—H12A 109.7 C24—C23—H23A 109.5
C11—C12—H12A 109.7 C22—C23—H23A 109.5
C13—C12—H12B 109.7 C24—C23—H23B 109.5
C11—C12—H12B 109.7 C22—C23—H23B 109.5
H12A—C12—H12B 108.2 H23A—C23—H23B 108.1
C14—C13—C12 111.3 (6) C23—C24—C25 112.4 (3)
C14—C13—H13A 109.4 C23—C24—H24A 109.1
C12—C13—H13A 109.4 C25—C24—H24A 109.1
C14—C13—H13B 109.4 C23—C24—H24B 109.1
C12—C13—H13B 109.4 C25—C24—H24B 109.1
H13A—C13—H13B 108.0 H24A—C24—H24B 107.9
C15—C14—C13 110.0 (6) C24—C25—C26 111.1 (3)
C15—C14—H14A 109.7 C24—C25—H25A 109.4
C13—C14—H14A 109.7 C26—C25—H25A 109.4
C15—C14—H14B 109.7 C24—C25—H25B 109.4
C13—C14—H14B 109.7 C26—C25—H25B 109.4
H14A—C14—H14B 108.2 H25A—C25—H25B 108.0
C14—C15—C16 111.8 (6) C21—C26—C25 109.2 (3)
C14—C15—H15A 109.2 C21—C26—H26A 109.8
C16—C15—H15A 109.2 C25—C26—H26A 109.8
C14—C15—H15B 109.2 C21—C26—H26B 109.8
C16—C15—H15B 109.2 C25—C26—H26B 109.8
H15A—C15—H15B 107.9 H26A—C26—H26B 108.3
Br2—Ga1—P1—C21 −99.72 (10) P1—C11—C16—C15 −180.0 (11)
Br1—Ga1—P1—C21 150.72 (10) C14—C15—C16—C11 −55.2 (13)
Ga1i—Ga1—P1—C21 25.94 (11) C11—P1—C21—C22 −64.9 (6)
Br2—Ga1—P1—C11 24.9 (6) Ga1—P1—C21—C22 64.5 (2)
Br1—Ga1—P1—C11 −84.6 (6) C11A—P1—C21—C26 167.9 (11)
Ga1i—Ga1—P1—C11 150.6 (6) C11—P1—C21—C26 170.9 (6)
C21—P1—C11—C16 −164.2 (8) Ga1—P1—C21—C26 −59.8 (2)
Ga1—P1—C11—C16 66.8 (9) C26—C21—C22—C23 −59.0 (3)
C21—P1—C11—C12 −38.2 (11) P1—C21—C22—C23 177.6 (2)
Ga1—P1—C11—C12 −167.2 (7) C21—C22—C23—C24 56.9 (4)
C16—C11—C12—C13 −54.2 (12) C22—C23—C24—C25 −55.9 (4)
P1—C11—C12—C13 −179.3 (8) C23—C24—C25—C26 55.1 (4)
C11—C12—C13—C14 56.9 (10) C22—C21—C26—C25 57.8 (3)
C12—C13—C14—C15 −58.8 (10) P1—C21—C26—C25 −178.3 (2)
C13—C14—C15—C16 57.5 (12) C24—C25—C26—C21 −54.8 (4)
C12—C11—C16—C15 53.3 (13)

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2174).

References

  1. Baker, R. J., Bettentrup, H. & Jones, C. (2003). Eur. J. Inorg. Chem. pp. 2446–2451.
  2. Bruker (2010). APEX2, SAINT and XSHELL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Schnoeckel, H. (2010). Chem. Rev. 110, 4125–4163. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Steiner, J., Stosser, G. & Schnoeckel, H. (2004). Angew. Chem. Int. Ed. 43, 302–305. [DOI] [PubMed]
  7. Uhl, W., Layh, M. & Hildenbrand, T. J. (1989). Organomet. Chem. 364, 289–300.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812035982/nk2174sup1.cif

e-68-m1245-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812035982/nk2174Isup2.hkl

e-68-m1245-Isup2.hkl (237.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES