Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):m1250. doi: 10.1107/S1600536812037877

Dichlorido[2-(pyridin-2-yl)-N-(pyridin-2-yl­methyl­idene)ethanamine-κ3 N,N′,N′′]manganese(II) monohydrate

Daniel Tinguiano a, Ibrahima Elhadj Thiam a, Moussa Dieng a, Mohamed Gaye a,*, Pascal Retailleau b
PMCID: PMC3470139  PMID: 23125583

Abstract

In the title complex, [MnCl2(C13H13N3)]·H2O, the MnII atom is in a distorted square-pyramidal environment, with an Addison τ parameter of 0.037. The coordination geometry is defined by three N-atom donors from the tridentate 2-(pyridin-2-yl)-N-(pyridin-2-yl­methyl­idene)ethanamine ligand and two terminal Cl atoms. Although the H atoms of the lattice water molecule were not located, O⋯O distances of 3.103 (7) Å and O⋯Cl distances of 3.240 (3) and 3.482 (4) Å suggest that hydrogen bonding is responsible for the stabilization of the crystal packing.

Related literature  

For the computation of the τ parameter describing the distortion of a square-pyramidal geometry, see: Addison et al. (1984). For a related structure, see: Marzec et al. (2011).graphic file with name e-68-m1250-scheme1.jpg

Experimental  

Crystal data  

  • [MnCl2(C13H13N3)]·H2O

  • M r = 355.12

  • Monoclinic, Inline graphic

  • a = 19.173 (3) Å

  • b = 8.826 (1) Å

  • c = 18.088 (2) Å

  • β = 94.009 (2)°

  • V = 3053.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.20 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009)] T min = 0.69, T max = 0.79

  • 13865 measured reflections

  • 2774 independent reflections

  • 2039 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.113

  • S = 1.02

  • 2773 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037877/fk2065sup1.cif

e-68-m1250-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037877/fk2065Isup2.hkl

e-68-m1250-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the title compound, the MnII ion displays a fivefold coordination geometry by three nitrogen atoms from the ligand molecule and two chloride atoms in terminal positions. A non-coordinated solvent water molecule is present. The bond lengths between the N atoms and the metal ion vary between 2.226 (3) Å [Mn1—N2] and 2.259 (3) Å [Mn1—N1]. These values are comparable to the bond lengths in similar manganese complex [2.2227 (16)–2.2628 (16) Å] (Marzec et al., 2011). The Mn—Cl bond distances are 2.4554 (11) Å for Mn1—Cl1 and 2.4338 (10) Å for Mn1—Cl2. The Cl1—Mn1—Cl2 measures 99.89 (4)° and the angles between the MnII ion and the coordinating N atoms located in the basal plane vary between 74.40 (11) ° [N2—Mn1—N3] and 159.28 (11)° [N3—Mn1—N1]. The largest angles around the MnII center are: β=N2—Mn—Cl2=161.52 (8)° and α = N1—Mn—N3=159.28 (11)°. Since the distortion value of the coordination polyhedron, τ=(β-α)/60, is evaluated by the two largest angles a in five-coordination geometry (Addison et al., 1984), the value of τ=0.037 which can be compared with the ideal value of 1 for a trigonal-bipyramidal environment and 0 for a square-pyramidal environment, indicates a distorted square-pyramidal geometry around the Mn center with N1, N2, N3, and Cl2 in the plane. The apical position is occupied by Cl1. The configuration around C8 is assigned to be E, as the torsion angles N2—C8—C9—C10 and C7—N2—C8—C9 are 178.9 (3)° and -178.7 (3)°, respectively.

Experimental

[(2-pyridyl)-N-(2-pyridylmethyl)ethanamine] (0.2133 g, 1 mmol) was dissolved in 20 ml of methanol. To the resulting solution, MnCl2.4H2O (0.1979 g, 1 mmol) was added. Immediate color change was observed. The mixture was stirred at room temperature during 2 h. The solution was filtered off and concentrated to tenth. Crystals that separated from the brown solution were filtered off and recrystallized in methanol. On standing for two weeks, suitable X-ray crystals were obtained. Yield: 65%. Anal. Calc. for [C13H15Cl2N3OMn] (%): C, 43.97; H, 4.26; N, 11.83. Found: C, 43.72; H, 4.80; N, 11.77. Selected IR data (cm-1, KBr pellet): 1635.

Refinement

All H(C) atoms were located in difference maps. They were then treated as riding in geometrically idealized positions, with C—H = 0.93 (aryl), or 0.97 Å (CH2), and with Uiso(H)=1.2 Ueq(C). Water-H atoms could not be detected reliably. One low-resolution reflection (111) was omitted due to beamstop shading (OMIT instruction in SHELX97-L)).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement ellipsoids at the 50% probability level.

Crystal data

[MnCl2(C13H13N3)]·H2O F(000) = 1448
Mr = 355.12 Dx = 1.545 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 4419 reflections
a = 19.173 (3) Å θ = 0.4–25.4°
b = 8.826 (1) Å µ = 1.21 mm1
c = 18.088 (2) Å T = 293 K
β = 94.009 (2)° Block, brown
V = 3053.4 (7) Å3 0.26 × 0.24 × 0.20 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 2774 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD 2039 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
Detector resolution: 9 pixels mm-1 θmax = 25.3°, θmin = 3.0°
phi and ω scans h = −22→20
Absorption correction: multi-scan [SCALEPACK in CrystalClear-SM Expert (Rigaku, 2009)] k = −10→10
Tmin = 0.69, Tmax = 0.79 l = −21→20
13865 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.113 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0548P)2 + 3.8894P] where P = (Fo2 + 2Fc2)/3
2773 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.08475 (2) 0.08118 (6) 0.45536 (3) 0.04179 (19)
Cl1 0.17062 (4) 0.04014 (11) 0.36281 (5) 0.0530 (3)
Cl2 0.01984 (4) −0.15558 (10) 0.44268 (5) 0.0488 (3)
N1 0.16088 (13) 0.0210 (3) 0.55189 (15) 0.0442 (7)
N2 0.11199 (14) 0.3215 (3) 0.48114 (17) 0.0486 (7)
N3 0.01099 (13) 0.2207 (3) 0.38141 (15) 0.0416 (7)
C1 0.18382 (19) −0.1219 (4) 0.5525 (2) 0.0543 (9)
H1 0.1642 −0.1882 0.5169 0.065*
C2 0.2348 (2) −0.1764 (5) 0.6028 (3) 0.0664 (11)
H2 0.2492 −0.2770 0.6018 0.080*
C3 0.2634 (2) −0.0776 (5) 0.6541 (3) 0.0781 (14)
H3 0.2984 −0.1096 0.6888 0.094*
C4 0.2405 (2) 0.0689 (5) 0.6543 (3) 0.0713 (12)
H4 0.2597 0.1362 0.6896 0.086*
C5 0.18906 (16) 0.1179 (4) 0.6027 (2) 0.0465 (8)
C6 0.16231 (18) 0.2766 (4) 0.6053 (2) 0.0556 (10)
H6A 0.1888 0.3293 0.6451 0.067*
H6B 0.1141 0.2727 0.6182 0.067*
C7 0.16495 (18) 0.3695 (5) 0.5364 (2) 0.0565 (10)
H7A 0.1580 0.4754 0.5481 0.068*
H7B 0.2107 0.3593 0.5171 0.068*
C8 0.07445 (18) 0.4208 (4) 0.4444 (2) 0.0515 (9)
H8 0.0822 0.5235 0.4529 0.062*
C9 0.01888 (16) 0.3713 (4) 0.38865 (19) 0.0433 (8)
C10 −0.02351 (19) 0.4727 (4) 0.3488 (2) 0.0554 (10)
H10 −0.0168 0.5765 0.3546 0.066*
C11 −0.0758 (2) 0.4180 (5) 0.3002 (2) 0.0597 (10)
H11 −0.1053 0.4843 0.2731 0.072*
C12 −0.08389 (19) 0.2653 (5) 0.2925 (2) 0.0572 (10)
H12 −0.1187 0.2259 0.2597 0.069*
C13 −0.03961 (17) 0.1700 (4) 0.33402 (19) 0.0476 (8)
H13 −0.0455 0.0659 0.3286 0.057*
O1W 0.08035 (19) 0.2122 (4) 0.76769 (19) 0.0981 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0446 (3) 0.0303 (3) 0.0486 (3) −0.0041 (2) −0.0107 (2) 0.0010 (2)
Cl1 0.0494 (5) 0.0530 (6) 0.0562 (6) 0.0021 (4) 0.0006 (4) 0.0027 (4)
Cl2 0.0553 (5) 0.0368 (5) 0.0541 (5) −0.0117 (4) 0.0031 (4) −0.0055 (4)
N1 0.0427 (15) 0.0465 (18) 0.0425 (17) 0.0020 (13) −0.0028 (12) 0.0024 (14)
N2 0.0428 (15) 0.0470 (19) 0.0566 (19) −0.0089 (13) 0.0068 (13) −0.0112 (15)
N3 0.0437 (15) 0.0407 (17) 0.0400 (16) 0.0006 (12) −0.0002 (12) 0.0004 (13)
C1 0.059 (2) 0.045 (2) 0.057 (2) 0.0075 (17) −0.0052 (17) −0.0016 (18)
C2 0.068 (2) 0.049 (3) 0.080 (3) 0.0153 (19) −0.008 (2) 0.010 (2)
C3 0.072 (3) 0.073 (3) 0.084 (3) 0.010 (2) −0.036 (2) 0.011 (3)
C4 0.067 (3) 0.073 (3) 0.070 (3) −0.001 (2) −0.027 (2) −0.007 (2)
C5 0.0398 (18) 0.050 (2) 0.048 (2) −0.0010 (15) −0.0028 (15) 0.0024 (18)
C6 0.046 (2) 0.054 (2) 0.066 (3) −0.0038 (16) −0.0080 (17) −0.006 (2)
C7 0.047 (2) 0.055 (2) 0.067 (3) −0.0068 (17) 0.0008 (17) −0.013 (2)
C8 0.055 (2) 0.035 (2) 0.064 (3) 0.0050 (15) −0.0012 (18) −0.0003 (18)
C9 0.0438 (18) 0.0358 (19) 0.050 (2) 0.0047 (14) −0.0014 (15) −0.0023 (16)
C10 0.060 (2) 0.042 (2) 0.062 (3) 0.0116 (17) −0.0054 (18) −0.0003 (19)
C11 0.057 (2) 0.067 (3) 0.053 (2) 0.0220 (19) −0.0087 (17) 0.003 (2)
C12 0.049 (2) 0.071 (3) 0.050 (2) 0.0048 (18) −0.0077 (17) −0.005 (2)
C13 0.0491 (19) 0.047 (2) 0.046 (2) −0.0033 (16) −0.0023 (15) −0.0049 (17)
O1W 0.115 (3) 0.091 (3) 0.087 (2) 0.012 (2) −0.001 (2) 0.023 (2)

Geometric parameters (Å, º)

Mn1—N2 2.226 (3) C4—H4 0.9300
Mn1—N3 2.245 (3) C5—C6 1.494 (5)
Mn1—N1 2.259 (3) C6—C7 1.495 (5)
Mn1—Cl2 2.4348 (10) C6—H6A 0.9700
Mn1—Cl1 2.4554 (11) C6—H6B 0.9700
N1—C1 1.336 (5) C7—H7A 0.9700
N1—C5 1.341 (4) C7—H7B 0.9700
N2—C8 1.288 (5) C8—C9 1.481 (5)
N2—C7 1.438 (4) C8—H8 0.9300
N3—C13 1.327 (4) C9—C10 1.378 (5)
N3—C9 1.343 (4) C10—C11 1.373 (5)
C1—C2 1.376 (5) C10—H10 0.9300
C1—H1 0.9300 C11—C12 1.363 (5)
C2—C3 1.360 (6) C11—H11 0.9300
C2—H2 0.9300 C12—C13 1.380 (5)
C3—C4 1.366 (6) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.379 (5)
N2—Mn1—N3 74.40 (11) N1—C5—C6 119.8 (3)
N2—Mn1—N1 86.14 (11) C4—C5—C6 120.3 (3)
N3—Mn1—N1 159.28 (11) C5—C6—C7 117.2 (3)
N2—Mn1—Cl2 161.52 (8) C5—C6—H6A 108.0
N3—Mn1—Cl2 96.78 (7) C7—C6—H6A 108.0
N1—Mn1—Cl2 99.75 (8) C5—C6—H6B 108.0
N2—Mn1—Cl1 97.16 (8) C7—C6—H6B 108.0
N3—Mn1—Cl1 95.69 (7) H6A—C6—H6B 107.2
N1—Mn1—Cl1 93.70 (7) N2—C7—C6 110.8 (3)
Cl2—Mn1—Cl1 99.89 (4) N2—C7—H7A 109.5
C1—N1—C5 118.7 (3) C6—C7—H7A 109.5
C1—N1—Mn1 115.0 (2) N2—C7—H7B 109.5
C5—N1—Mn1 126.0 (2) C6—C7—H7B 109.5
C8—N2—C7 120.0 (3) H7A—C7—H7B 108.1
C8—N2—Mn1 115.2 (2) N2—C8—C9 120.0 (3)
C7—N2—Mn1 124.8 (3) N2—C8—H8 120.0
C13—N3—C9 118.0 (3) C9—C8—H8 120.0
C13—N3—Mn1 127.0 (2) N3—C9—C10 122.2 (3)
C9—N3—Mn1 115.0 (2) N3—C9—C8 115.4 (3)
N1—C1—C2 123.7 (4) C10—C9—C8 122.3 (3)
N1—C1—H1 118.2 C11—C10—C9 118.9 (4)
C2—C1—H1 118.2 C11—C10—H10 120.5
C3—C2—C1 117.4 (4) C9—C10—H10 120.5
C3—C2—H2 121.3 C12—C11—C10 119.1 (4)
C1—C2—H2 121.3 C12—C11—H11 120.5
C2—C3—C4 119.6 (4) C10—C11—H11 120.5
C2—C3—H3 120.2 C11—C12—C13 119.1 (4)
C4—C3—H3 120.2 C11—C12—H12 120.5
C3—C4—C5 120.7 (4) C13—C12—H12 120.5
C3—C4—H4 119.6 N3—C13—C12 122.7 (3)
C5—C4—H4 119.6 N3—C13—H13 118.6
N1—C5—C4 119.9 (4) C12—C13—H13 118.6
N2—Mn1—N1—C1 −160.9 (3) C2—C3—C4—C5 −0.6 (8)
N3—Mn1—N1—C1 179.2 (3) C1—N1—C5—C4 −0.2 (5)
Cl2—Mn1—N1—C1 36.8 (2) Mn1—N1—C5—C4 −173.2 (3)
Cl1—Mn1—N1—C1 −63.9 (2) C1—N1—C5—C6 −177.5 (3)
N2—Mn1—N1—C5 12.3 (3) Mn1—N1—C5—C6 9.5 (5)
N3—Mn1—N1—C5 −7.6 (5) C3—C4—C5—N1 0.3 (7)
Cl2—Mn1—N1—C5 −150.0 (3) C3—C4—C5—C6 177.6 (4)
Cl1—Mn1—N1—C5 109.3 (3) N1—C5—C6—C7 −57.7 (4)
N3—Mn1—N2—C8 0.7 (2) C4—C5—C6—C7 125.1 (4)
N1—Mn1—N2—C8 −172.1 (3) C8—N2—C7—C6 135.2 (4)
Cl2—Mn1—N2—C8 −62.6 (4) Mn1—N2—C7—C6 −42.0 (4)
Cl1—Mn1—N2—C8 94.7 (2) C5—C6—C7—N2 73.8 (4)
N3—Mn1—N2—C7 178.0 (3) C7—N2—C8—C9 −178.7 (3)
N1—Mn1—N2—C7 5.2 (3) Mn1—N2—C8—C9 −1.2 (4)
Cl2—Mn1—N2—C7 114.7 (3) C13—N3—C9—C10 0.0 (5)
Cl1—Mn1—N2—C7 −88.0 (3) Mn1—N3—C9—C10 −178.2 (3)
N2—Mn1—N3—C13 −178.1 (3) C13—N3—C9—C8 177.8 (3)
N1—Mn1—N3—C13 −157.4 (3) Mn1—N3—C9—C8 −0.4 (4)
Cl2—Mn1—N3—C13 −14.7 (3) N2—C8—C9—N3 1.1 (5)
Cl1—Mn1—N3—C13 86.0 (3) N2—C8—C9—C10 178.9 (3)
N2—Mn1—N3—C9 −0.1 (2) N3—C9—C10—C11 0.3 (5)
N1—Mn1—N3—C9 20.5 (4) C8—C9—C10—C11 −177.3 (3)
Cl2—Mn1—N3—C9 163.3 (2) C9—C10—C11—C12 −0.6 (6)
Cl1—Mn1—N3—C9 −96.0 (2) C10—C11—C12—C13 0.5 (6)
C5—N1—C1—C2 0.4 (6) C9—N3—C13—C12 −0.1 (5)
Mn1—N1—C1—C2 174.1 (3) Mn1—N3—C13—C12 177.9 (3)
N1—C1—C2—C3 −0.6 (7) C11—C12—C13—N3 −0.2 (6)
C1—C2—C3—C4 0.7 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2065).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Marzec, B., Mahimaidoss, M., Zhang, L., McCabe, T. & Schmitt, W. (2011). Acta Cryst. E67, m1676. [DOI] [PMC free article] [PubMed]
  3. Rigaku (2009). CrystalClear-SM Expert Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Welter, R. (2006). Acta Cryst. A62, s252.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037877/fk2065sup1.cif

e-68-m1250-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037877/fk2065Isup2.hkl

e-68-m1250-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES