Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 8;68(Pt 10):m1253–m1254. doi: 10.1107/S1600536812038111

Bromidobis[3-(1H-pyrazol-1-yl-κN 2)propionamide-κO]copper(II) bromide methanol monosolvate

Thomas Wagner a, Cristian G Hrib a, Volker Lorenz a, Frank T Edelmann a,*, John W Gilje b
PMCID: PMC3470141  PMID: 23125585

Abstract

The title copper(II) N-pyrazolylpropanamide (PPA) complex, [CuBr(PPA)2]Br, was obtained in 78% yield by treatment of CuBr2 with an excess of the ligand in methanol. Crystallization from the mother liquid afforded the title compound, i.e. the methanol solvate [CuBr(C6H9N3O)2]Br·CH3OH or [CuBr(PPA)2]Br·MeOH, as bright green crystals. In the solid state, the title salt comprises isolated [CuBr(PPA)2]+ cations, separated bromide ions and methanol of crystallization. In the cation, the central CuII ion is coordinated by two N,O-chelating PPA ligands and one Br ion. The coordination geometry around the CuII ion is distorted trigonal–bipyramidal with the bromide ligand and the amide O atoms occupying the equatorial positions [Cu—Br = 2.4443 (4) Å; Cu—O = 2.035 (2) and 2.179 (2) Å], while the pyrazole N atoms coordinate in the axial positions [Cu—N = 1.975 (2) and 1.976 (2) Å]. In the crystal, the three constituents are linked by N—H⋯Br, O—H⋯Br, and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For related complexes containing multifunctional ligands with substituted pyrazole groups, see: Gracia-Anton et al. (2003); Mukherjee (2000); Pal et al. (2005); Shaw et al. (2004). For acryl­amide complexes, see: Girma et al. (2005a ,b ,c , 2006). For related complexes containing 3-pyrazol-1-yl-propionamide, see: Girma et al. (2008); Wagner et al. (2012).graphic file with name e-68-m1253-scheme1.jpg

Experimental  

Crystal data  

  • [CuBr(C6H9N3O)2]Br·CH4O

  • M r = 533.73

  • Monoclinic, Inline graphic

  • a = 10.5075 (4) Å

  • b = 12.6951 (4) Å

  • c = 15.1551 (7) Å

  • β = 102.821 (3)°

  • V = 1971.19 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.19 mm−1

  • T = 150 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.046, T max = 0.139

  • 22729 measured reflections

  • 5320 independent reflections

  • 4728 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.079

  • S = 1.21

  • 5320 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038111/qk2039sup1.cif

e-68-m1253-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038111/qk2039Isup2.hkl

e-68-m1253-Isup2.hkl (260.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NB⋯O3i 0.88 2.07 2.926 (3) 163
N1—H1NA⋯Br2 0.88 2.56 3.434 (3) 173
N4—H4NA⋯O3ii 0.88 2.09 2.956 (3) 168
O3—H1O⋯Br2 0.81 (5) 2.41 (5) 3.215 (3) 175 (5)
N4—H4NB⋯Br2iii 0.88 2.71 3.548 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Currently there is a considerable interest in the use of multifunctional ligands containing substituted pyrazole groups because of their potential applications in catalysis and their ability to form complexes that mimic structural and catalytic functions in metalloproteins (Gracia-Anton et al., 2003; Mukherjee, 2000; Pal et al., 2005; Shaw et al., 2004). As part of our continuing interest in the coordination chemistry of acrylamide (Girma et al., 2005a; Girma et al., 2005b; Girma et al., 2005c; Girma et al., 2006) and acrylamide-based ligands we have earlier synthesized and characterized an acrylamide-derived pyrazole ligand, N-pyrazolylpropanamide (= PPA) (Girma et al., 2008). This ligand is readily accessible in large quantities by base-catalyzed Michael addition of pyrazole to acrylamide. The first PPA complexes to be reported were (PPA)2CuCl2 and (PPA)4Co3Cl6 with copper(II) and cobalt(II) chlorides, respectively. Both complexes contain the ligand in a seven-membered ring N,O-chelating fashion. Especially remarkable was the unusual zwitterionic structure of the trinuclear cobalt complex, which additionally comprises bridging N-pyrazolylpropanamide ligands (Girma et al., 2008). Most recently, the syntheses and single-crystal X-ray structures of several new first-row transition metal complexes containing the multifunctional acrylamide-derived PPA have been reported. The general synthesis involved treatment of the appropriate transition metal salts with an excess of PPA in ethanolic solution in the presence of triethylorthoformate as dehydrating agent. This way the perchlorates of iron(II) and cobalt(II) afforded the complexes [(PPA)2M(EtOH)2](ClO4)2 (M = Fe, Co) in good yields (82% resp. 85%). Light green (PPA)2NiCl2 has been obtained analogously from NiCl2.6H2O. Hydration of (PPA)2NiCl2 afforded the dark green cationic nickel(II) complex [(PPA)2Ni(H2O)4]Cl2. In the complexes with M = Fe, Co, and Ni the N-pyrazolylpropanamide acts as N,O-chelating ligand. In contrast, monodentate N-coordination via the pyrazolyl ring was found for the dicoordinate silver(I) complex [(PPA)2Ag]NO3.H2O (Wagner et al., 2012).

In the course of these investigations we now studied the reaction of copper(II) dibromide with PPA. A reaction carried out in methanol solution using an excess over 2 equivalents of PPA afforded a green, microcrystalline solid which was shown by elemental analysis and its IR spectrum to be the bromide analogue of the previously reported (PPA)2CuCl2 (Girma et al., 2008), i.e. (PPA)2CuBr2. Comparison of the IR spectra of the free ligand PPA and (PPA)2CuBr2 revealed a significant decrease to lower wavenumbers in the CO absorptions (1690 cm-1 in PPA vs. 1661 cm-1 in (PPA)2CuBr2 and 1664 cm-1 in (PPA)2CuCl2). This CO absorption shift is consistent with a decrease in the electron density of the amide carbonyl moiety resulting from coordination to the cationic copper(II) center. Crystallization of (PPA)2CuBr2 directly from the mother liquid afforded the title compound, i.e. the methanol-solvate, as bright green, X-ray quality single crystals. Surprisingly, the X-ray crystal structure determination revealed the presence of the ionic product [CuBr(PPA)2]Br.MeOH with 5-coordinate copper. In the solid state, [CuBr(PPA)2]Br.MeOH comprises isolated [CuBr(PPA)2]+ cations, separated bromide ions and methanol of crystallization (Fig. 1). In the cation, the central Cu2+ ion is coordinated by two N,O-chelating PPA ligands and one Br- ion. The coordination geometry around copper can be best described as distorted trigonal-bipyramidal with the bromo ligand and the amide O atoms occupying the equatorial positions (Cu—Br 2.4443 (4) Å; Cu—O 2.035 (2) and 2.179 (2) Å), while the pyrazolyl N-atoms coordinate in the axial positions (Cu—N 1.975 (2) and 1.976 (2) Å). This is in contrast to the neutral hexacoordinate chloro-analogue (PPA)2CuCl2 in which the coordination geometry around the central Cu2+ ion is octahedral (Girma et al., 2008). The angles at Cu in the equatorial plane of the [CuBr(PPA)2]+ cation are 109.30 (8)° (O1—Cu—O2), 116.80 (6)° (O2—Cu—Br1), and 133.76 (6)° (O1—Cu—Br1), respectively. The axial angle at Cu (N3—Cu—N6) is 174.53 (9)°. The planes of the opposing pyrazole rings are inclined to each other by ~71°.

Like all previously reported transition metal PPA complexes (Wagner et al., 2012), the title compound also forms a hydrogen-bonded network in the solid state (Fig. 2). The crystal structure consists of chains of [CuBr(PPA)2]+ cations linked by N—H···Br, O—H···Br, and N—H···O hydrogen bonds. The uncoordinated bromide ions are connected via O—H···Br hydrogen bonds to the methanol of crystallization and via two N—H···Br interactions with the amide NH2 groups of different cations. N—H···O hydrogen bonds between amide NH2 groups and the methanol of crystallization interconnect the chains.

Experimental

A solution of CuBr2 (0.6 g, 1.69 mmol) in methanol (50 ml) was combined with a solution of N-pyrazolylpropanamide (= PPA, 0.8 g, 5.5 mmol) in methanol (30 ml). After stirring for 24 h at room temperature, the reaction mixture was concentrated in vacuo to a total volume of ca 50 ml, whereupon a large quantity of the title compound precipitated in its unsolvated form [CuBr(PPA)2]Br in the form of a green, microcrystalline solid in 78% yield (1.05 g). Bright green, X-ray quality crystals of the title compound [CuBr(PPA)2]Br.MeOH were obtained upon standing of the mother liquid at room temperature for 14 d.

Anal. Calcd. for unsolvated C12H18Br2CuN6O2 (Mr = 501.66): C 28.73%; H 3.62%; N 16.75%; Br 31.86%. Found: C 28.35%; H 3.46%; N 17.03%; Br 31.47%. IR (KBr): 3436m ν(N—H), 3336m ν(N—H), 3298m, 3188m, 3020w, 2964m, 2847w, 1661s ν(C=O), 1594m; ν(C=C), 1494w, 1450m, 1429m, 1418m, 1375w, 1325m, 1285m, 1262s, 1230m, 1175m, 1098vs, 1022vs, 957m, 949m, 868w, 801vs, 768m, 759m, 628m cm-1.

Refinement

The hydrogen atoms were included in idealized positions using a riding model, with N—H = 0.88 Å, aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å [Uiso(H) = 1.2Ueq(C)] and methyl C—H = 0.98 Å [Uiso(H) = 1.5Ueq(C)]. The O—H proton of methanol was freely refined.

Figures

Fig. 1.

Fig. 1.

The ion-pair of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. Hydrogen bonds: 1 N(1)—H(1NB)···O(3)i, 2 N(1)—H(1NA)···Br(2), 3 N(4)—H(4NA)···O(3)ii, 4 O(3)—H(1O)···Br(2), 5 N(4)—H(4NB)···Br(2)iii. See Table 1 for details.

Crystal data

[CuBr(C6H9N3O)2]Br·CH4O F(000) = 1060
Mr = 533.73 Dx = 1.798 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.5075 (4) Å Cell parameters from 30970 reflections
b = 12.6951 (4) Å θ = 2.0–29.6°
c = 15.1551 (7) Å µ = 5.19 mm1
β = 102.821 (3)° T = 150 K
V = 1971.19 (13) Å3 Prism, red
Z = 4 0.40 × 0.40 × 0.30 mm

Data collection

Stoe IPDS 2T diffractometer 5320 independent reflections
Radiation source: fine-focus sealed tube 4728 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 6.67 pixels mm-1 θmax = 29.2°, θmin = 2.1°
ω and φ scans h = −14→14
Absorption correction: multi-scan (Blessing, 1995) k = −16→17
Tmin = 0.046, Tmax = 0.139 l = −20→20
22729 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2084P] where P = (Fo2 + 2Fc2)/3
5320 reflections (Δ/σ)max = 0.001
231 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8900 (3) 0.6996 (2) −0.06693 (18) 0.0305 (5)
C2 0.7834 (3) 0.6821 (3) −0.15080 (18) 0.0370 (6)
H2A 0.8183 0.6990 −0.2047 0.044*
H2B 0.7594 0.6065 −0.1543 0.044*
C3 0.6616 (3) 0.7466 (2) −0.15415 (18) 0.0336 (6)
H3A 0.6871 0.8199 −0.1361 0.040*
H3B 0.6096 0.7481 −0.2172 0.040*
C4 0.4774 (3) 0.6412 (3) −0.1195 (2) 0.0391 (7)
H4 0.4395 0.6181 −0.1792 0.047*
C5 0.4364 (3) 0.6148 (2) −0.0431 (2) 0.0397 (7)
H5 0.3648 0.5710 −0.0386 0.048*
C6 0.5219 (3) 0.6655 (2) 0.02672 (19) 0.0319 (5)
H6 0.5181 0.6613 0.0887 0.038*
C7 0.6471 (2) 1.0403 (2) −0.04321 (17) 0.0261 (5)
C8 0.6850 (3) 1.1169 (2) 0.03418 (19) 0.0338 (6)
H8A 0.6095 1.1633 0.0348 0.041*
H8B 0.7567 1.1619 0.0229 0.041*
C9 0.7282 (3) 1.0670 (2) 0.12653 (17) 0.0294 (5)
H9A 0.7269 1.1211 0.1734 0.035*
H9B 0.6652 1.0113 0.1333 0.035*
C10 0.9713 (3) 1.0667 (2) 0.1824 (2) 0.0355 (6)
H10 0.9809 1.1329 0.2126 0.043*
C11 1.0701 (3) 1.0012 (3) 0.1729 (2) 0.0386 (7)
H11 1.1611 1.0120 0.1948 0.046*
C12 1.0095 (3) 0.9150 (2) 0.12412 (19) 0.0330 (6)
H12 1.0537 0.8558 0.1069 0.040*
C13 0.9020 (4) 0.5691 (3) 0.1716 (3) 0.0615 (11)
H13A 0.8351 0.5250 0.1892 0.092*
H13B 0.8811 0.5784 0.1058 0.092*
H13C 0.9044 0.6380 0.2011 0.092*
N1 0.9979 (3) 0.6464 (2) −0.06237 (19) 0.0463 (7)
H1NA 1.0636 0.6541 −0.0154 0.056*
H1NB 1.0049 0.6030 −0.1063 0.056*
N2 0.5811 (2) 0.70573 (19) −0.09558 (15) 0.0310 (5)
N3 0.6103 (2) 0.72132 (17) −0.00452 (14) 0.0268 (4)
N4 0.6262 (2) 1.0830 (2) −0.12477 (15) 0.0340 (5)
H4NA 0.6005 1.0434 −0.1731 0.041*
H4NB 0.6379 1.1511 −0.1307 0.041*
N5 0.8581 (2) 1.02134 (18) 0.14175 (14) 0.0279 (4)
N6 0.8801 (2) 0.92774 (17) 0.10504 (14) 0.0269 (4)
O1 0.8780 (2) 0.76128 (17) −0.00574 (13) 0.0347 (4)
O2 0.63174 (19) 0.94471 (15) −0.03194 (13) 0.0311 (4)
O3 1.0247 (2) 0.51986 (18) 0.19866 (14) 0.0375 (5)
Br1 0.69094 (3) 0.80080 (2) 0.204039 (17) 0.03143 (7)
Br2 1.23867 (3) 0.66180 (2) 0.131810 (19) 0.03514 (8)
Cu1 0.74194 (3) 0.82447 (2) 0.05558 (2) 0.02424 (8)
H1O 1.078 (5) 0.559 (4) 0.184 (3) 0.065 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0342 (13) 0.0303 (13) 0.0272 (12) 0.0011 (11) 0.0074 (10) −0.0035 (10)
C2 0.0414 (15) 0.0441 (17) 0.0247 (12) 0.0063 (13) 0.0054 (11) −0.0076 (11)
C3 0.0390 (15) 0.0367 (15) 0.0235 (11) 0.0061 (12) 0.0033 (10) −0.0008 (10)
C4 0.0333 (14) 0.0382 (15) 0.0401 (15) 0.0011 (12) −0.0040 (12) −0.0116 (12)
C5 0.0337 (14) 0.0304 (14) 0.0536 (18) −0.0014 (12) 0.0066 (13) −0.0055 (13)
C6 0.0340 (13) 0.0264 (13) 0.0349 (13) 0.0019 (11) 0.0066 (11) 0.0021 (10)
C7 0.0242 (11) 0.0241 (11) 0.0289 (11) 0.0065 (9) 0.0034 (9) 0.0009 (9)
C8 0.0427 (15) 0.0227 (12) 0.0331 (13) 0.0043 (11) 0.0020 (11) −0.0025 (10)
C9 0.0324 (13) 0.0264 (12) 0.0293 (12) 0.0019 (10) 0.0064 (10) −0.0043 (10)
C10 0.0378 (14) 0.0306 (14) 0.0350 (14) −0.0056 (12) 0.0011 (11) −0.0061 (11)
C11 0.0291 (14) 0.0406 (16) 0.0427 (15) −0.0041 (12) 0.0008 (12) −0.0059 (13)
C12 0.0283 (13) 0.0360 (14) 0.0331 (13) 0.0015 (11) 0.0038 (10) −0.0034 (11)
C13 0.065 (2) 0.058 (2) 0.073 (3) 0.027 (2) 0.039 (2) 0.025 (2)
N1 0.0405 (14) 0.0560 (17) 0.0387 (13) 0.0153 (13) 0.0012 (11) −0.0196 (12)
N2 0.0329 (11) 0.0318 (12) 0.0247 (10) 0.0035 (9) −0.0010 (8) −0.0022 (9)
N3 0.0312 (11) 0.0234 (10) 0.0237 (9) 0.0026 (8) 0.0013 (8) −0.0005 (8)
N4 0.0432 (13) 0.0277 (11) 0.0292 (11) 0.0018 (10) 0.0040 (10) 0.0035 (9)
N5 0.0307 (11) 0.0259 (11) 0.0259 (10) −0.0003 (9) 0.0034 (8) −0.0050 (8)
N6 0.0276 (10) 0.0257 (10) 0.0267 (10) 0.0028 (8) 0.0045 (8) −0.0039 (8)
O1 0.0329 (10) 0.0386 (11) 0.0322 (9) 0.0020 (9) 0.0063 (8) −0.0129 (8)
O2 0.0359 (10) 0.0240 (9) 0.0295 (9) 0.0021 (8) −0.0008 (7) 0.0014 (7)
O3 0.0475 (13) 0.0313 (11) 0.0350 (10) 0.0007 (9) 0.0118 (9) 0.0026 (8)
Br1 0.03704 (14) 0.03321 (14) 0.02379 (11) 0.00164 (11) 0.00622 (9) 0.00264 (9)
Br2 0.03229 (14) 0.03990 (16) 0.03307 (14) −0.00045 (11) 0.00691 (10) 0.00324 (11)
Cu1 0.02684 (15) 0.02305 (14) 0.02175 (14) 0.00120 (12) 0.00305 (11) −0.00200 (10)

Geometric parameters (Å, º)

C1—O1 1.241 (3) C9—H9B 0.9900
C1—N1 1.309 (4) C10—N5 1.343 (3)
C1—C2 1.513 (4) C10—C11 1.363 (5)
C2—C3 1.510 (4) C10—H10 0.9500
C2—H2A 0.9900 C11—C12 1.393 (4)
C2—H2B 0.9900 C11—H11 0.9500
C3—N2 1.451 (4) C12—N6 1.336 (3)
C3—H3A 0.9900 C12—H12 0.9500
C3—H3B 0.9900 C13—O3 1.410 (4)
C4—N2 1.347 (4) C13—H13A 0.9800
C4—C5 1.365 (5) C13—H13B 0.9800
C4—H4 0.9500 C13—H13C 0.9800
C5—C6 1.385 (4) N1—H1NA 0.8800
C5—H5 0.9500 N1—H1NB 0.8800
C6—N3 1.336 (4) N2—N3 1.360 (3)
C6—H6 0.9500 N3—Cu1 1.975 (2)
C7—O2 1.241 (3) N4—H4NA 0.8800
C7—N4 1.323 (3) N4—H4NB 0.8800
C7—C8 1.507 (4) N5—N6 1.354 (3)
C8—C9 1.511 (4) N6—Cu1 1.976 (2)
C8—H8A 0.9900 O1—Cu1 2.035 (2)
C8—H8B 0.9900 O2—Cu1 2.179 (2)
C9—N5 1.453 (3) O3—H1O 0.81 (5)
C9—H9A 0.9900 Br1—Cu1 2.4443 (4)
O1—C1—N1 121.1 (3) C10—C11—H11 127.3
O1—C1—C2 122.8 (3) C12—C11—H11 127.3
N1—C1—C2 116.1 (2) N6—C12—C11 110.1 (3)
C3—C2—C1 114.3 (2) N6—C12—H12 124.9
C3—C2—H2A 108.7 C11—C12—H12 124.9
C1—C2—H2A 108.7 O3—C13—H13A 109.5
C3—C2—H2B 108.7 O3—C13—H13B 109.5
C1—C2—H2B 108.7 H13A—C13—H13B 109.5
H2A—C2—H2B 107.6 O3—C13—H13C 109.5
N2—C3—C2 113.0 (2) H13A—C13—H13C 109.5
N2—C3—H3A 109.0 H13B—C13—H13C 109.5
C2—C3—H3A 109.0 C1—N1—H1NA 120.0
N2—C3—H3B 109.0 C1—N1—H1NB 120.0
C2—C3—H3B 109.0 H1NA—N1—H1NB 120.0
H3A—C3—H3B 107.8 C4—N2—N3 110.4 (2)
N2—C4—C5 108.1 (3) C4—N2—C3 126.8 (2)
N2—C4—H4 126.0 N3—N2—C3 122.5 (2)
C5—C4—H4 126.0 C6—N3—N2 105.3 (2)
C4—C5—C6 105.1 (3) C6—N3—Cu1 131.25 (19)
C4—C5—H5 127.5 N2—N3—Cu1 122.79 (18)
C6—C5—H5 127.5 C7—N4—H4NA 120.0
N3—C6—C5 111.1 (3) C7—N4—H4NB 120.0
N3—C6—H6 124.4 H4NA—N4—H4NB 120.0
C5—C6—H6 124.4 C10—N5—N6 110.5 (2)
O2—C7—N4 122.0 (2) C10—N5—C9 127.4 (2)
O2—C7—C8 122.9 (2) N6—N5—C9 121.7 (2)
N4—C7—C8 115.0 (2) C12—N6—N5 106.0 (2)
C7—C8—C9 115.0 (2) C12—N6—Cu1 128.97 (19)
C7—C8—H8A 108.5 N5—N6—Cu1 124.08 (17)
C9—C8—H8A 108.5 C1—O1—Cu1 141.98 (19)
C7—C8—H8B 108.5 C7—O2—Cu1 134.49 (17)
C9—C8—H8B 108.5 C13—O3—H1O 107 (3)
H8A—C8—H8B 107.5 N3—Cu1—N6 174.53 (9)
N5—C9—C8 113.1 (2) N3—Cu1—O1 91.11 (9)
N5—C9—H9A 109.0 N6—Cu1—O1 84.46 (9)
C8—C9—H9A 109.0 N3—Cu1—O2 87.74 (8)
N5—C9—H9B 109.0 N6—Cu1—O2 90.72 (8)
C8—C9—H9B 109.0 O1—Cu1—O2 109.30 (8)
H9A—C9—H9B 107.8 N3—Cu1—Br1 93.94 (7)
N5—C10—C11 107.9 (3) N6—Cu1—Br1 91.43 (7)
N5—C10—H10 126.0 O1—Cu1—Br1 133.76 (6)
C11—C10—H10 126.0 O2—Cu1—Br1 116.80 (6)
C10—C11—C12 105.4 (3)
O1—C1—C2—C3 0.5 (4) C9—N5—N6—C12 173.5 (2)
N1—C1—C2—C3 −178.8 (3) C10—N5—N6—Cu1 170.06 (19)
C1—C2—C3—N2 −76.3 (3) C9—N5—N6—Cu1 −16.9 (3)
N2—C4—C5—C6 −0.8 (3) N1—C1—O1—Cu1 −150.9 (3)
C4—C5—C6—N3 0.6 (3) C2—C1—O1—Cu1 29.7 (5)
O2—C7—C8—C9 11.3 (4) N4—C7—O2—Cu1 136.7 (2)
N4—C7—C8—C9 −171.4 (3) C8—C7—O2—Cu1 −46.1 (4)
C7—C8—C9—N5 74.4 (3) C6—N3—Cu1—O1 137.5 (2)
N5—C10—C11—C12 0.3 (4) N2—N3—Cu1—O1 −52.8 (2)
C10—C11—C12—N6 0.0 (4) C6—N3—Cu1—O2 −113.2 (2)
C5—C4—N2—N3 0.7 (3) N2—N3—Cu1—O2 56.5 (2)
C5—C4—N2—C3 175.0 (3) C6—N3—Cu1—Br1 3.5 (2)
C2—C3—N2—C4 −95.8 (3) N2—N3—Cu1—Br1 173.20 (19)
C2—C3—N2—N3 77.8 (3) C12—N6—Cu1—O1 −29.6 (2)
C5—C6—N3—N2 −0.2 (3) N5—N6—Cu1—O1 163.2 (2)
C5—C6—N3—Cu1 170.8 (2) C12—N6—Cu1—O2 −139.0 (2)
C4—N2—N3—C6 −0.4 (3) N5—N6—Cu1—O2 53.9 (2)
C3—N2—N3—C6 −174.9 (2) C12—N6—Cu1—Br1 104.2 (2)
C4—N2—N3—Cu1 −172.32 (19) N5—N6—Cu1—Br1 −62.93 (19)
C3—N2—N3—Cu1 13.2 (3) C1—O1—Cu1—N3 12.4 (3)
C11—C10—N5—N6 −0.4 (3) C1—O1—Cu1—N6 −164.4 (3)
C11—C10—N5—C9 −173.0 (3) C1—O1—Cu1—O2 −75.5 (3)
C8—C9—N5—C10 94.8 (3) C1—O1—Cu1—Br1 109.0 (3)
C8—C9—N5—N6 −77.1 (3) C7—O2—Cu1—N3 −177.4 (3)
C11—C12—N6—N5 −0.3 (3) C7—O2—Cu1—N6 −2.6 (3)
C11—C12—N6—Cu1 −169.2 (2) C7—O2—Cu1—O1 −87.0 (3)
C10—N5—N6—C12 0.4 (3) C7—O2—Cu1—Br1 89.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1NB···O3i 0.88 2.07 2.926 (3) 163
N1—H1NA···Br2 0.88 2.56 3.434 (3) 173
N4—H4NA···O3ii 0.88 2.09 2.956 (3) 168
O3—H1O···Br2 0.81 (5) 2.41 (5) 3.215 (3) 175 (5)
N4—H4NB···Br2iii 0.88 2.71 3.548 (3) 160

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2039).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005a). Coord. Chem. Rev. 249, 1283–1293.
  3. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005b). Z. Anorg. Allg. Chem. 631, 1419–1422.
  4. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2005c). Z. Anorg. Allg. Chem. 631, 2763–2769.
  5. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2006). Z. Anorg. Allg. Chem. 632, 1874–1878.
  6. Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267–273.
  7. Gracia-Anton, G., Pons, J., Solans, X., Font-Bardia, M. & Ros, J. (2003). Eur. J. Inorg. Chem. pp. 2992–3000.
  8. Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.
  9. Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889. [DOI] [PubMed]
  10. Shaw, J. L., Cardon, T. B., Lorigan, G. A. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. pp. 1073–1080.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stoe & Cie. (2002). X-AREA and X-RED Stoe & Cie GmbH, Darmstadt, Germany.
  13. Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Amenta, D. S., Burnside, C. J. & Gilje, J. W. (2012). Z. Anorg. Allg. Chem. 638 In the press. doi:10.1002/zaac.201200139.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038111/qk2039sup1.cif

e-68-m1253-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038111/qk2039Isup2.hkl

e-68-m1253-Isup2.hkl (260.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES