Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 12;68(Pt 10):m1256. doi: 10.1107/S1600536812038147

Trichlorido(dimethyl sulfoxide-κO)(di-2-pyridyl­amine-κ2 N,N′)indium(III)

Sadif A Shirvan a,*, Sara Haydari Dezfuli a, Elyas Golabi b
PMCID: PMC3470143  PMID: 23125587

Abstract

In the title compound, [InCl3(C10H9N3)(C2H6OS)], the InIII atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from a chelating di-2-pyridyl­amine ligand, one O atom from a dimethyl sulfoxide ligand and three Cl atoms. Inter­molecular C—H⋯Cl hydrogen bonds and π–π contacts between the pyridine rings [centroid–centroid distance = 3.510 (3) Å] are present in the crystal.

Related literature  

For related structures, see: Abedi et al. (2011, 2012a ,b ); Ahmadi et al. (2008); Clemente (2005); Dong et al. (1987); Ilyuhin & Malyarik (1994); Kalateh, Ahmadi et al. (2008); Kalateh, Norouzi et al. (2008); Malecki et al. (2011); Malyarick et al. (1992); Shi & Jiang (2006); Shirvan & Haydari Dezfuli (2012); Yoshikawa et al. (2004); Yousefi et al. (2009).graphic file with name e-68-m1256-scheme1.jpg

Experimental  

Crystal data  

  • [InCl3(C10H9N3)(C2H6OS)]

  • M r = 470.51

  • Monoclinic, Inline graphic

  • a = 29.283 (2) Å

  • b = 7.7642 (7) Å

  • c = 15.9459 (12) Å

  • β = 104.891 (6)°

  • V = 3503.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.702, T max = 0.796

  • 14020 measured reflections

  • 3448 independent reflections

  • 2503 reflections with I > 2σ(I)

  • R int = 0.075

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.080

  • S = 0.99

  • 3448 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038147/hy2584sup1.cif

e-68-m1256-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038147/hy2584Isup2.hkl

e-68-m1256-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯Cl2i 0.96 2.74 3.499 (8) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the synthesis and crystal structure of [In(4,4'-dmbipy)Cl3(MeOH)].MeOH, (II) (Shirvan & Haydari Dezfuli, 2012) (4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine). Several InIII complexes with a formula [In(L1)Cl3(L2)] (L1 = an N,N'-chelating ligand, L2 = DMSO, H2O, MeOH or EtOH), such as [In(bipy)Cl3(H2O)], (III), [In(bipy)Cl3(EtOH)], (IV), [In(bipy)Cl3(H2O)].H2O, (V) (Malyarick et al., 1992), [In(phen)Cl3(DMSO)], (VI) (Dong et al., 1987), [In(phen)Cl3(H2O)], (VII), [In(phen)Cl3(EtOH)].EtOH, (VIII) (Ilyuhin & Malyarik, 1994), [In(4,4'-dmbipy)Cl3(DMSO)], (IX) (Ahmadi et al., 2008), [In(5,5'-dmbipy)Cl3(MeOH)], (X) (Kalateh, Ahmadi et al., 2008), [In(4,4'-dtbipy)Cl3(MeOH)].0.5MeOH, (XI) (Abedi et al., 2012a), [In(4bt)Cl3(MeOH)], (XII) and [In(4bt)Cl3(DMSO)], (XIII) (Abedi et al., 2012b) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, DMSO = dimethyl sulfoxide, 4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbipy = 5,5'-dimethyl-2,2'-bipyridine, 4,4'-dtbipy = 4,4'-di-tert-butyl-2,2'-bipyridine, 4bt = 4,4'-bithiazole), have been synthesized and characterized by single-crystal X-ray diffraction methods. Di-2-pyridylamine (DPA) is a good bidentate ligand, and numerous complexes with DPA have been prepared, such as that of [Hg(DPA)Br2], (XIV) (Kalateh, Norouzi et al., 2008), [Hg(DPA)Cl2], (XV) (Yousefi et al., 2009), [Pt(DPA)Cl4].DMF, (XVI) (Abedi et al., 2011), [Ir(DPA)2Cl2](PF6), (XVII) (Yoshikawa et al., 2004), [Cu(DPA)2](BF4)2, (XVIII) (Clemente, 2005), [Mn(DPA)2(NCS)2].0.5H2O, (XIX) (Malecki et al., 2011) and [Au(DPA)Cl2]Cl, (XX) (Shi & Jiang, 2006). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the InIII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating DPA ligand, one O atom from a dimethyl sulfoxide ligand and three Cl atoms. In the crystal, intermolecular C—H···Cl hydrogen bonds (Table 1, Fig. 2) and π–π contacts between the pyridine rings, Cg3···Cg3i [symmetry code: (i) -x, -y, -z. Cg3 is the centroid of the N3/C6–C10 ring], with a centroid–centroid distance of 3.510 (3) Å, stabilize the structure.

Experimental

For the preparation of the title compound, a solution of di-2-pyridylamine (0.29 g, 1.65 mmol) in methanol (10 ml) was added to a solution of InCl3.4H2O (0.48 g, 1.65 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction analysis were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.57 g, 73.4%).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 (CH), 0.96 (CH3) and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[InCl3(C10H9N3)(C2H6OS)] F(000) = 1856
Mr = 470.51 Dx = 1.784 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 14020 reflections
a = 29.283 (2) Å θ = 2.6–26.0°
b = 7.7642 (7) Å µ = 1.93 mm1
c = 15.9459 (12) Å T = 298 K
β = 104.891 (6)° Block, colorless
V = 3503.7 (5) Å3 0.20 × 0.18 × 0.15 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 3448 independent reflections
Radiation source: fine-focus sealed tube 2503 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.075
φ and ω scans θmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −29→36
Tmin = 0.702, Tmax = 0.796 k = −9→9
14020 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0384P)2] where P = (Fo2 + 2Fc2)/3
3448 reflections (Δ/σ)max = 0.007
192 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1269 (2) 0.2012 (6) 0.2648 (3) 0.0416 (13)
H1 0.1292 0.3198 0.2730 0.050*
C2 0.1331 (2) 0.0973 (7) 0.3361 (4) 0.0444 (13)
H2 0.1397 0.1439 0.3916 0.053*
C3 0.12911 (19) −0.0815 (7) 0.3234 (4) 0.0422 (13)
H3 0.1334 −0.1557 0.3705 0.051*
C4 0.11901 (18) −0.1440 (6) 0.2417 (3) 0.0363 (12)
H4 0.1167 −0.2623 0.2325 0.044*
C5 0.11200 (16) −0.0330 (6) 0.1712 (3) 0.0301 (10)
C6 0.07132 (16) −0.0304 (5) 0.0123 (3) 0.0276 (10)
C7 0.04239 (18) −0.1417 (6) −0.0476 (3) 0.0367 (12)
H7 0.0439 −0.2600 −0.0381 0.044*
C8 0.01195 (19) −0.0754 (7) −0.1202 (3) 0.0433 (13)
H8 −0.0075 −0.1478 −0.1605 0.052*
C9 0.01051 (18) 0.1023 (7) −0.1329 (3) 0.0415 (13)
H9 −0.0105 0.1510 −0.1810 0.050*
C10 0.04049 (17) 0.2029 (6) −0.0735 (3) 0.0355 (12)
H10 0.0393 0.3215 −0.0819 0.043*
C11 0.2689 (2) 0.1898 (9) 0.1207 (5) 0.0667 (19)
H11A 0.2654 0.3090 0.1337 0.080*
H11B 0.2735 0.1797 0.0635 0.080*
H11C 0.2957 0.1425 0.1622 0.080*
C12 0.2306 (3) −0.1246 (8) 0.0852 (6) 0.090 (3)
H12A 0.2358 −0.1087 0.0286 0.108*
H12B 0.2047 −0.2024 0.0812 0.108*
H12C 0.2586 −0.1717 0.1236 0.108*
N1 0.11766 (14) 0.1385 (4) 0.1824 (3) 0.0320 (9)
N2 0.09923 (15) −0.1004 (5) 0.0877 (3) 0.0341 (10)
H2B 0.1104 −0.2010 0.0822 0.041*
N3 0.07196 (13) 0.1395 (4) −0.0027 (2) 0.0289 (9)
O1 0.17759 (11) 0.1461 (4) 0.0516 (2) 0.0371 (8)
In1 0.124091 (13) 0.32946 (4) 0.07746 (2) 0.02991 (11)
Cl1 0.12945 (6) 0.49624 (17) −0.04921 (10) 0.0507 (4)
Cl2 0.18785 (6) 0.48512 (18) 0.17913 (10) 0.0562 (4)
Cl3 0.05889 (5) 0.49583 (15) 0.10961 (9) 0.0437 (3)
S1 0.21736 (5) 0.07577 (18) 0.12573 (10) 0.0435 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.051 (3) 0.035 (3) 0.038 (3) 0.005 (2) 0.010 (3) −0.001 (2)
C2 0.054 (4) 0.045 (3) 0.033 (3) 0.005 (3) 0.010 (3) −0.006 (2)
C3 0.043 (3) 0.047 (3) 0.039 (3) 0.009 (2) 0.013 (3) 0.013 (2)
C4 0.045 (3) 0.021 (2) 0.044 (3) 0.005 (2) 0.012 (2) 0.004 (2)
C5 0.024 (2) 0.030 (2) 0.035 (3) 0.0034 (19) 0.007 (2) −0.001 (2)
C6 0.029 (3) 0.023 (2) 0.031 (3) −0.0002 (18) 0.008 (2) 0.0012 (18)
C7 0.042 (3) 0.026 (2) 0.042 (3) −0.006 (2) 0.011 (2) −0.006 (2)
C8 0.040 (3) 0.054 (3) 0.034 (3) −0.011 (3) 0.006 (3) −0.013 (2)
C9 0.030 (3) 0.058 (3) 0.034 (3) 0.002 (2) 0.003 (2) 0.003 (2)
C10 0.037 (3) 0.032 (3) 0.038 (3) 0.005 (2) 0.011 (2) 0.004 (2)
C11 0.040 (3) 0.089 (5) 0.066 (4) −0.002 (3) 0.005 (3) 0.027 (4)
C12 0.077 (5) 0.051 (4) 0.134 (8) 0.032 (4) 0.014 (5) 0.002 (4)
N1 0.041 (2) 0.0216 (19) 0.032 (2) 0.0007 (16) 0.0073 (19) 0.0021 (15)
N2 0.048 (3) 0.0181 (16) 0.033 (2) 0.0054 (17) 0.004 (2) −0.0015 (16)
N3 0.030 (2) 0.0252 (19) 0.029 (2) 0.0008 (15) 0.0041 (18) 0.0008 (15)
O1 0.0319 (18) 0.0387 (18) 0.0377 (19) 0.0067 (15) 0.0035 (15) −0.0017 (15)
In1 0.03548 (19) 0.01872 (14) 0.03429 (18) −0.00068 (16) 0.00671 (13) −0.00053 (15)
Cl1 0.0634 (9) 0.0369 (6) 0.0565 (9) 0.0011 (6) 0.0239 (8) 0.0158 (6)
Cl2 0.0556 (9) 0.0504 (8) 0.0572 (9) −0.0182 (7) 0.0048 (8) −0.0175 (7)
Cl3 0.0470 (8) 0.0267 (6) 0.0591 (8) 0.0062 (5) 0.0170 (7) −0.0020 (5)
S1 0.0354 (7) 0.0489 (8) 0.0454 (8) 0.0085 (6) 0.0092 (6) 0.0139 (6)

Geometric parameters (Å, º)

C1—N1 1.362 (7) C9—H9 0.9300
C1—C2 1.368 (8) C10—N3 1.353 (6)
C1—H1 0.9300 C10—H10 0.9300
C2—C3 1.403 (7) C11—S1 1.768 (6)
C2—H2 0.9300 C11—H11A 0.9600
C3—C4 1.350 (7) C11—H11B 0.9600
C3—H3 0.9300 C11—H11C 0.9600
C4—C5 1.389 (7) C12—S1 1.766 (7)
C4—H4 0.9300 C12—H12A 0.9600
C5—N1 1.347 (5) C12—H12B 0.9600
C5—N2 1.390 (6) C12—H12C 0.9600
C6—N3 1.342 (5) N1—In1 2.279 (4)
C6—N2 1.380 (6) N2—H2B 0.8600
C6—C7 1.401 (6) N3—In1 2.267 (4)
C7—C8 1.367 (7) O1—S1 1.531 (3)
C7—H7 0.9300 O1—In1 2.232 (3)
C8—C9 1.394 (8) In1—Cl1 2.4381 (14)
C8—H8 0.9300 In1—Cl2 2.4535 (14)
C9—C10 1.361 (7) In1—Cl3 2.4658 (13)
N1—C1—C2 122.8 (5) H11B—C11—H11C 109.5
N1—C1—H1 118.6 S1—C12—H12A 109.5
C2—C1—H1 118.6 S1—C12—H12B 109.5
C1—C2—C3 118.4 (5) H12A—C12—H12B 109.5
C1—C2—H2 120.8 S1—C12—H12C 109.5
C3—C2—H2 120.8 H12A—C12—H12C 109.5
C4—C3—C2 119.0 (5) H12B—C12—H12C 109.5
C4—C3—H3 120.5 C5—N1—C1 117.9 (4)
C2—C3—H3 120.5 C5—N1—In1 125.2 (3)
C3—C4—C5 120.5 (4) C1—N1—In1 116.2 (3)
C3—C4—H4 119.7 C6—N2—C5 129.8 (4)
C5—C4—H4 119.7 C6—N2—H2B 115.1
N1—C5—C4 121.2 (4) C5—N2—H2B 115.1
N1—C5—N2 119.5 (4) C6—N3—C10 118.0 (4)
C4—C5—N2 119.3 (4) C6—N3—In1 125.2 (3)
N3—C6—N2 120.7 (4) C10—N3—In1 116.7 (3)
N3—C6—C7 121.2 (4) S1—O1—In1 121.04 (19)
N2—C6—C7 118.0 (4) O1—In1—N3 83.32 (13)
C8—C7—C6 119.6 (4) O1—In1—N1 85.12 (13)
C8—C7—H7 120.2 N3—In1—N1 79.63 (13)
C6—C7—H7 120.2 O1—In1—Cl1 89.31 (9)
C7—C8—C9 119.0 (5) N3—In1—Cl1 93.18 (10)
C7—C8—H8 120.5 N1—In1—Cl1 171.37 (10)
C9—C8—H8 120.5 O1—In1—Cl2 89.15 (9)
C10—C9—C8 118.5 (5) N3—In1—Cl2 168.87 (10)
C10—C9—H9 120.8 N1—In1—Cl2 91.60 (10)
C8—C9—H9 120.8 Cl1—In1—Cl2 94.92 (5)
N3—C10—C9 123.4 (4) O1—In1—Cl3 171.97 (9)
N3—C10—H10 118.3 N3—In1—Cl3 90.74 (10)
C9—C10—H10 118.3 N1—In1—Cl3 88.50 (10)
S1—C11—H11A 109.5 Cl1—In1—Cl3 96.44 (5)
S1—C11—H11B 109.5 Cl2—In1—Cl3 95.91 (5)
H11A—C11—H11B 109.5 O1—S1—C12 103.1 (3)
S1—C11—H11C 109.5 O1—S1—C11 106.0 (3)
H11A—C11—H11C 109.5 C12—S1—C11 98.9 (4)
N1—C1—C2—C3 −0.7 (9) C9—C10—N3—In1 172.6 (4)
C1—C2—C3—C4 −0.6 (8) S1—O1—In1—N3 −128.7 (2)
C2—C3—C4—C5 −0.9 (8) S1—O1—In1—N1 −48.6 (2)
C3—C4—C5—N1 3.8 (8) S1—O1—In1—Cl1 138.0 (2)
C3—C4—C5—N2 −176.7 (5) S1—O1—In1—Cl2 43.1 (2)
N3—C6—C7—C8 −4.3 (8) C6—N3—In1—O1 53.4 (4)
N2—C6—C7—C8 175.6 (5) C10—N3—In1—O1 −123.6 (3)
C6—C7—C8—C9 0.1 (8) C6—N3—In1—N1 −32.9 (4)
C7—C8—C9—C10 1.7 (8) C10—N3—In1—N1 150.2 (4)
C8—C9—C10—N3 0.5 (8) C6—N3—In1—Cl1 142.3 (4)
C4—C5—N1—C1 −5.0 (7) C10—N3—In1—Cl1 −34.6 (3)
N2—C5—N1—C1 175.5 (4) C6—N3—In1—Cl2 5.6 (8)
C4—C5—N1—In1 165.3 (4) C10—N3—In1—Cl2 −171.3 (4)
N2—C5—N1—In1 −14.3 (6) C6—N3—In1—Cl3 −121.2 (4)
C2—C1—N1—C5 3.5 (8) C10—N3—In1—Cl3 61.9 (3)
C2—C1—N1—In1 −167.6 (4) C5—N1—In1—O1 −48.7 (4)
N3—C6—N2—C5 35.4 (8) C1—N1—In1—O1 121.6 (4)
C7—C6—N2—C5 −144.5 (5) C5—N1—In1—N3 35.3 (4)
N1—C5—N2—C6 −32.5 (7) C1—N1—In1—N3 −154.3 (4)
C4—C5—N2—C6 147.9 (5) C5—N1—In1—Cl2 −137.7 (4)
N2—C6—N3—C10 −173.5 (4) C1—N1—In1—Cl2 32.6 (4)
C7—C6—N3—C10 6.4 (7) C5—N1—In1—Cl3 126.4 (4)
N2—C6—N3—In1 9.6 (6) C1—N1—In1—Cl3 −63.2 (4)
C7—C6—N3—In1 −170.5 (3) In1—O1—S1—C12 153.0 (3)
C9—C10—N3—C6 −4.5 (7) In1—O1—S1—C11 −103.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11C···Cl2i 0.96 2.74 3.499 (8) 137

Symmetry code: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2584).

References

  1. Abedi, A., Safari, A. R. & Amani, V. (2012a). Z. Kristallogr. New Cryst. Struct. 227, 169–198.
  2. Abedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012b). J. Coord. Chem. 65, 325–338.
  3. Abedi, A., Safari, N., Amani, V., Tavajohi, S. & Ostad, N. (2011). Inorg. Chim. Acta, 376, 679–686.
  4. Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. [DOI] [PMC free article] [PubMed]
  5. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Clemente, D. A. (2005). Inorg. Chim. Acta, 358, 1725–1748.
  8. Dong, N., Hang, N.-D., Dong, Z.-C. & Hu, S.-Z. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 145–149.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Ilyuhin, A. B. & Malyarik, M. A. (1994). Kristallografiya, 39, 439–443.
  11. Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354. [DOI] [PMC free article] [PubMed]
  12. Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584. [DOI] [PMC free article] [PubMed]
  13. Malecki, J. G., Machura, B., Switlicka, A., Gron, T. & Balanda, M. (2011). Polyhedron, 30, 746–753.
  14. Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067–1073.
  15. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  16. Shi, P.-F. & Jiang, Q. (2006). Acta Cryst. E62, m1183–m1185.
  17. Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1189–m1190. [DOI] [PMC free article] [PubMed]
  18. Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y., Takashima, H. & Tsukahara, K. (2004). Acta Cryst. E60, m546–m547.
  19. Yousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9–m10. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038147/hy2584sup1.cif

e-68-m1256-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038147/hy2584Isup2.hkl

e-68-m1256-Isup2.hkl (169.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES