Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 12;68(Pt 10):m1257–m1258. doi: 10.1107/S1600536812038287

(2.2.2-Cryptand)potassium tetra­kis­(η2-ethyl­ene)cobaltate(−I)

William W Brennessel a,*, John E Ellis a
PMCID: PMC3470144  PMID: 23125588

Abstract

The title salt, [K(C18H36N2O6)][Co(C2H4)4], is one of only two known homoleptic ethyl­enemetalates. The cation and anion are well separated, which gives an unperturbed tetra­hedral anion as is expected for a formally Co−I d 10 metal center. The considerable elongation of the C=C bonds of the ethyl­ene ligands [average 1.401 (6) Å], relative to that of free ethyl­ene (1.333 Å), is consistent with metal→π* back-bonding models. One arm of the 2.2.2-cryptand (4,7,13,16,21,24-hexa­oxa-1,10-diaza­bicyclo­[8.8.8]hexa­cosa­ne) complexant is disordered and was modeled over two positions with a refined occupancy ratio of 0.559 (2):0.441 (2). In the crystal, the cationic K(2.2.2-cryptand) units are linked via C—H⋯O hydrogen bonds, forming inversion dimers. There are no other significant inter­molecular inter­actions in the crystal structure.

Related literature  

For reports on the only other homoleptic ethyl­enemetalate, the ethyl­eneferrate, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980). For reports on the anion of the title complex, but with different cations, see: Jonas (1979, 1981, 1984, 1985); Jonas et al. (1979); Jonas & Krüger (1980). For the initial report of this anion synthesized from cobalt(II) bromide, see: Brennessel et al. (2006). For neutral and cationic structurally characterized homoleptic ethyl­ene transition metal complexes, see for [Pt0]: Howard et al. (1983); for [Cu+]: Santiso-Quiñones et al. (2007); for [Ag+]: Reisinger et al. (2009); for [Au+]: Dias et al. (2008). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For the bond-length of ethyl­ene gas, see: Lide (2003).graphic file with name e-68-m1257-scheme1.jpg

Experimental  

Crystal data  

  • [K(C18H36N2O6)][Co(C2H4)4]

  • M r = 586.73

  • Orthorhombic, Inline graphic

  • a = 25.836 (3) Å

  • b = 10.4820 (12) Å

  • c = 22.544 (3) Å

  • V = 6105.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 173 K

  • 0.50 × 0.24 × 0.16 mm

Data collection  

  • Siemens SMART CCD Platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.709, T max = 0.891

  • 45000 measured reflections

  • 7010 independent reflections

  • 4825 reflections with I > 2σ(I)

  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.073

  • S = 1.02

  • 7010 reflections

  • 414 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038287/su2495sup1.cif

e-68-m1257-sup1.cif (47KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038287/su2495Isup2.hkl

e-68-m1257-Isup2.hkl (343.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯O5i 0.99 2.59 3.326 (6) 131

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

supplementary crystallographic information

Comment

The reductive synthesis of the anion from cobaltocene (CoCp2) with alkali metals has been reported previously in a patent (Jonas, 1979) and in review articles (Jonas & Krüger, 1980; Jonas, Schieferstein et al., 1979; Jonas, 1981, 1984, 1985). Herein we report on the first structure of the title anion and the reductive synthesis from cobalt(II) bromide using potassium naphthalene as the reducing agent. Because the advantages of having cyclopentadienide (Cp-) as a support ligand in the reduction from CoCp2 (Jonas & Krüger, 1980; see discussion on page 533) were not available in our synthesis, we had to be certain that ethylene gas was present in excess, to assist naphthalene in supporting the metal center in its various oxidation states from +2 to -1. This was achieved with low temperatures, specifically 195 K, at which point ethylene appeared to be "infinitely" soluble in THF. Even at the very cold, but slightly warmer, temperature of 213 K, ethylene appeared to have finite solubility. The other interesting point in the synthesis was that naphthalene would (re)coordinate to cobalt when THF was removed under reduced pressure. Therefore the isolation of the final product required that additional ethylene gas be reintroduced to the diethyl ether slurry to displace any (re)coordinated naphthalene. It was easy to determine when the naphthalene was fully displaced because the slurry lost all trace of red and became pale yellow to off-white. Details on the isolated red naphthalenecobaltates(–I) can be found elsewhere (Brennessel et al., 2006, Brennessel, 2009).

A search of the Cambridge Structural Database (CSD, Version 5.33, update No. 4, August 2012; Allen, 2002), indicated the presence of 629 structures containing an ethylene ligand, but only 29 are with first row transition metals containing at least two ethylene ligands.

The molecular structure of the title anion is illustrated in Fig. 1, and the title K+2.2.2-cryptand cationic unit in Fig. 2. The recently reported anion [Co(η2-C2H4)24-C10H8)]-, bis(ethylene)naphthalenecobaltate(–I), which occurs twice independently as part of a triple salt (Brennessel et al., 2006), has bond lengths that are statistically identical (1.410 (8) Å, avg) to those of the title complex (1.401 (6) Å, avg). The isoelectronic iron structure, [Li(tmeda)]2[Fe(η2-C2H4)4], has been determined with two unique C–C distances of 1.410 and 1.433 Å (Jonas, Schieferstein et al., 1979); relative to that of free ethylene = 1.333 Å (Lide, 2003). No standard uncertainties were reported, but they are likely to be somewhat large (R1 = 7.8%). Also, the ethylene ligands have an asymmetry due to different contact distances with the lithium cations. If we take the average C–C bond length of the iron structure at face value, 1.42 Å, then it appears to be slightly longer that of the title complex, 1.401 (6) Å, which would be consistent with a more reduced metal center. All other structurally characterized homoleptic ethylene transition metal compounds are either neutral: Pt (Howard et al., 1983); or cationic: Cu+ (Santiso-Quiñones et al., 2007), Ag+ (Reisinger et al., 2009), and Au+ (Dias et al., 2008).

In the crystal, the cationic K+2.2.2-cryptand units are linked via a pair of C-H···O hydrogen bonds to form inversion dimers (Table 1). There are no other significant intermolecular interactions in the crystal structure.

Experimental

Details on the preparation and purification of reagents and solvents, and descriptions of the equipment and techniques can be found elsewhere (Brennessel, 2009). Note that the following synthetic procedure results in a salt for which the potassium cation is complexed by 18-crown-6. Unfortunately single crystals that were grown of this complex resulted in very poor quality data (see below), and thus a different potassium complexant was incorporated for this study. To obtain the title complex the 2.2.2-cryptand salt, an aliquot of the yellow filtrate prior to the addition of 18-crown-6, was transferred to a flask containing excess 2.2.2-cryptand. Light yellow needles of the title complex were then grown from a pentane-layered THF solution at 273 K.

Argon was removed in vacuo from a flask containing deep green potassium naphthalene, K[C10H8], (13.7 mmol) in THF (50 ml, 195 K) and from a second flask containing bright blue anhydrous CoBr2 (1.000 g, 4.57 mmol) also in THF (50 ml, 195 K), and replaced with ethylene. At this low temperature ethylene is extremely ("infinitely") soluble and the flask system would develop a slight vacuum whenever the valve to the ethylene tank was closed. After ca. 15 psi of gas were drawn from the tank, both the tank and the flasks were closed off and argon was reintroduced to the line. Using argon pressure (a Hg bubbler was attached to the flask system to keep the pressure near 1 atm), the CoBr2 solution was transferred to the reducing agent via cannula, producing a pale yellow solution, which was then warmed slowly to room temperature (with the system open to the Hg bubbler!). The solution was filtered to remove KBr. 18-crown-6 (1.208 g, 4.57 mmol) in THF (20 ml) was added to the yellow filtrate. The solvent was removed in vacuo, which caused the solution to turn reddish as some naphthalene (re)coordinated to some of the product (see below). Et2O (75 ml) was added and argon was once again replaced with ethylene, at which point the slurry lost its red color and became nearly colorless. The lines to the flasks were freed of ethylene and replaced with argon (the flask was not evacuated to avoid possible re-coordination of naphthalene). The slurry was filtered, and the product was washed with Et2O (20 ml) and dried in vacuo, yielding an off-white solid (1.796 g, 83%). Although the product contained paramagnetic impurities which caused severe broadening of NMR spectral peaks, the material was sufficiently pure by this synthetic method for use in subsequent reactions. Pale yellow blocks of the18-crown-6 salt, which were grown from a pentane-layered THF solution at 273 K, were not suitable for a single-crystal X-ray experiment. The anion was badly disordered over a crystallographic twofold axis and no satisfactory model was obtained, thus the reason for the aliquot that was extracted for use with 2.2.2-cryptand to produce crystals of the title salt (see above). Crystal data for the 18-crown-6 salt: Monoclinic, C2/c; Cell constants (Å, °): a = 15.498 (5), b = 14.768 (5), c = 10.744 (4), B = 94.253 (4); V = 2452.2 (14) Å3; Z = 4; T = 173 (2) K; 2161 reflections (1813 for [I > 2σ(I)]).

Refinement

One arm of the 2.2.2-cryptand complexant (atoms O5,O6,C21-C26 & O5',O6',C21'-C26') was modeled as disordered over two positions with a refined occupancy ratio of 0.559 (2):0.441 (2). Corresponding bond lengths and angles in the two orientations of the cryptand arm disorder were restrained to be similar. Anisotropic displacement parameters for spatially close atoms from the two orientations were constrained to be equivalent. H atoms on the ethylene ligands were located in a difference Fourier map and were freely refined. All other H atoms were placed geometrically and treated as riding atoms: C-H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title anion, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular structure of the title cationic K+2.2.2-cryptand unit, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Only the major fragment of the disordered arm of the 2.2.2-cryptand complexant is shown.

Crystal data

[K(C18H36N2O6)][Co(C2H4)4] F(000) = 2528
Mr = 586.73 Dx = 1.277 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 3744 reflections
a = 25.836 (3) Å θ = 2.3–27.4°
b = 10.4820 (12) Å µ = 0.74 mm1
c = 22.544 (3) Å T = 173 K
V = 6105.4 (12) Å3 Needle, light yellow
Z = 8 0.50 × 0.24 × 0.16 mm

Data collection

Siemens SMART CCD Platform diffractometer 7010 independent reflections
Radiation source: normal-focus sealed tube 4825 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.056
ω scans θmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −26→33
Tmin = 0.709, Tmax = 0.891 k = −13→13
45000 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.9795P] where P = (Fo2 + 2Fc2)/3
7010 reflections (Δ/σ)max = 0.001
414 parameters Δρmax = 0.31 e Å3
16 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.371067 (10) 0.52565 (3) 0.455752 (11) 0.02568 (7)
C1 0.40825 (9) 0.6890 (2) 0.43378 (11) 0.0369 (5)
H1A 0.3861 (8) 0.750 (2) 0.4136 (9) 0.033 (6)*
H1B 0.4258 (8) 0.725 (2) 0.4690 (9) 0.042 (6)*
C2 0.43103 (9) 0.5863 (2) 0.40416 (11) 0.0368 (5)
H2A 0.4231 (8) 0.574 (2) 0.3623 (10) 0.042 (6)*
H2B 0.4641 (8) 0.553 (2) 0.4181 (9) 0.039 (6)*
C3 0.38604 (9) 0.3426 (2) 0.43062 (10) 0.0350 (5)
H3A 0.3803 (8) 0.330 (2) 0.3862 (10) 0.044 (6)*
H3B 0.4191 (8) 0.316 (2) 0.4458 (9) 0.035 (6)*
H4B 0.3467 (9) 0.321 (2) 0.5106 (10) 0.050 (7)*
C4 0.34319 (9) 0.3457 (2) 0.46850 (11) 0.0376 (5)
H4A 0.3074 (9) 0.333 (2) 0.4523 (10) 0.051 (7)*
C5 0.31747 (8) 0.5552 (2) 0.39157 (10) 0.0351 (5)
H5A 0.3026 (8) 0.476 (2) 0.3784 (9) 0.037 (6)*
H5B 0.3302 (9) 0.615 (2) 0.3607 (10) 0.051 (7)*
C6 0.29971 (8) 0.6068 (2) 0.44527 (9) 0.0347 (5)
H6A 0.2733 (9) 0.562 (2) 0.4666 (10) 0.048 (7)*
H6B 0.2998 (8) 0.701 (2) 0.4511 (9) 0.043 (6)*
C7 0.36906 (10) 0.5658 (3) 0.54443 (10) 0.0417 (5)
H7A 0.3434 (9) 0.513 (2) 0.5645 (10) 0.047 (7)*
H7B 0.3685 (9) 0.656 (3) 0.5526 (10) 0.057 (7)*
C8 0.41614 (10) 0.5080 (3) 0.52897 (9) 0.0402 (5)
H8A 0.4221 (9) 0.417 (2) 0.5389 (10) 0.051 (7)*
H8B 0.4488 (9) 0.559 (2) 0.5242 (10) 0.050 (7)*
K1 0.382354 (15) 0.89809 (4) 0.672690 (17) 0.02532 (10)
N1 0.30312 (6) 0.72674 (15) 0.72648 (7) 0.0258 (4)
C9 0.26926 (8) 0.67901 (19) 0.67875 (9) 0.0322 (5)
H9A 0.2389 0.6366 0.6969 0.039*
H9B 0.2884 0.6140 0.6556 0.039*
C10 0.25047 (8) 0.7816 (2) 0.63696 (9) 0.0349 (5)
H10A 0.2265 0.7445 0.6074 0.042*
H10B 0.2317 0.8483 0.6594 0.042*
O1 0.29389 (5) 0.83542 (13) 0.60803 (6) 0.0318 (3)
C11 0.27992 (8) 0.9181 (2) 0.56039 (9) 0.0347 (5)
H11A 0.2643 0.9973 0.5762 0.042*
H11B 0.2541 0.8758 0.5345 0.042*
C12 0.32733 (8) 0.9491 (2) 0.52562 (9) 0.0352 (5)
H12A 0.3436 0.8695 0.5111 0.042*
H12B 0.3180 1.0019 0.4908 0.042*
O2 0.36279 (5) 1.01677 (13) 0.56228 (6) 0.0322 (3)
C13 0.40865 (8) 1.0484 (2) 0.53034 (9) 0.0377 (5)
H13A 0.3995 1.0927 0.4930 0.045*
H13B 0.4278 0.9697 0.5202 0.045*
C14 0.44192 (9) 1.1334 (2) 0.56788 (9) 0.0381 (5)
H14A 0.4707 1.1663 0.5433 0.046*
H14B 0.4211 1.2074 0.5810 0.046*
C15 0.27290 (8) 0.7955 (2) 0.77164 (9) 0.0329 (5)
H15A 0.2549 0.7324 0.7969 0.039*
H15B 0.2461 0.8473 0.7514 0.039*
C16 0.30469 (8) 0.8818 (2) 0.81075 (8) 0.0322 (5)
H16A 0.2826 0.9185 0.8423 0.039*
H16B 0.3328 0.8324 0.8298 0.039*
O3 0.32619 (5) 0.98158 (12) 0.77543 (5) 0.0280 (3)
C17 0.35132 (7) 1.07411 (19) 0.81130 (8) 0.0289 (4)
H17A 0.3793 1.0331 0.8345 0.035*
H17B 0.3262 1.1117 0.8395 0.035*
C18 0.37352 (7) 1.17667 (18) 0.77276 (9) 0.0305 (4)
H18A 0.3457 1.2154 0.7485 0.037*
H18B 0.3889 1.2444 0.7978 0.037*
O4 0.41232 (5) 1.12393 (12) 0.73491 (6) 0.0272 (3)
C19 0.43554 (8) 1.22063 (19) 0.69949 (9) 0.0319 (5)
H19A 0.4483 1.2903 0.7253 0.038*
H19B 0.4095 1.2567 0.6720 0.038*
C20 0.47980 (8) 1.16543 (19) 0.66462 (9) 0.0308 (5)
H20A 0.4981 1.2355 0.6440 0.037*
H20B 0.5046 1.1255 0.6925 0.037*
C21 0.3328 (5) 0.6257 (11) 0.7567 (7) 0.0261 (18) 0.559 (2)
H21A 0.3082 0.5586 0.7692 0.031* 0.559 (2)
H21B 0.3481 0.6627 0.7931 0.031* 0.559 (2)
C22 0.3756 (5) 0.5629 (14) 0.7221 (6) 0.0234 (17) 0.559 (2)
H22A 0.3893 0.4889 0.7444 0.028* 0.559 (2)
H22B 0.3621 0.5318 0.6836 0.028* 0.559 (2)
O5 0.4154 (2) 0.6533 (7) 0.7125 (2) 0.0263 (9) 0.559 (2)
C23 0.4579 (3) 0.5979 (8) 0.6814 (4) 0.0259 (15) 0.559 (2)
H23A 0.4469 0.5723 0.6411 0.031* 0.559 (2)
H23B 0.4702 0.5210 0.7026 0.031* 0.559 (2)
C24 0.50011 (14) 0.6945 (3) 0.67784 (17) 0.0326 (7) 0.559 (2)
H24A 0.5098 0.7223 0.7183 0.039* 0.559 (2)
H24B 0.5310 0.6559 0.6590 0.039* 0.559 (2)
O6 0.48329 (11) 0.8030 (3) 0.64367 (13) 0.0277 (5) 0.559 (2)
C25 0.5242 (4) 0.8941 (10) 0.6412 (3) 0.0303 (16) 0.559 (2)
H25A 0.5566 0.8526 0.6279 0.036* 0.559 (2)
H25B 0.5301 0.9313 0.6810 0.036* 0.559 (2)
C26 0.5087 (5) 0.9973 (14) 0.5980 (6) 0.0299 (16) 0.559 (2)
H26A 0.5382 1.0562 0.5919 0.036* 0.559 (2)
H26B 0.5000 0.9584 0.5593 0.036* 0.559 (2)
C21' 0.3271 (7) 0.6114 (14) 0.7518 (9) 0.0261 (18) 0.441 (2)
H21C 0.3000 0.5464 0.7586 0.031* 0.441 (2)
H21D 0.3426 0.6329 0.7907 0.031* 0.441 (2)
C22' 0.3683 (6) 0.5561 (19) 0.7124 (8) 0.0234 (17) 0.441 (2)
H22C 0.3863 0.4863 0.7335 0.028* 0.441 (2)
H22D 0.3520 0.5199 0.6763 0.028* 0.441 (2)
O5' 0.4041 (3) 0.6504 (10) 0.6961 (3) 0.0263 (9) 0.441 (2)
C23' 0.4495 (4) 0.6008 (11) 0.6690 (6) 0.0259 (15) 0.441 (2)
H23C 0.4398 0.5327 0.6407 0.031* 0.441 (2)
H23D 0.4721 0.5626 0.6998 0.031* 0.441 (2)
C24' 0.47835 (18) 0.7025 (4) 0.6372 (2) 0.0326 (7) 0.441 (2)
H24C 0.5124 0.6698 0.6241 0.039* 0.441 (2)
H24D 0.4587 0.7297 0.6016 0.039* 0.441 (2)
O6' 0.48526 (15) 0.8071 (4) 0.67589 (16) 0.0277 (5) 0.441 (2)
C25' 0.5240 (6) 0.8960 (13) 0.6595 (5) 0.0303 (16) 0.441 (2)
H25C 0.5553 0.8487 0.6471 0.036* 0.441 (2)
H25D 0.5332 0.9478 0.6947 0.036* 0.441 (2)
C26' 0.5084 (7) 0.9842 (18) 0.6102 (8) 0.0299 (16) 0.441 (2)
H26C 0.5386 1.0381 0.6003 0.036* 0.441 (2)
H26D 0.5006 0.9315 0.5749 0.036* 0.441 (2)
N2 0.46366 (6) 1.06963 (15) 0.62048 (7) 0.0283 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02499 (13) 0.02911 (14) 0.02294 (12) 0.00124 (12) 0.00108 (11) 0.00137 (11)
C1 0.0348 (12) 0.0341 (13) 0.0419 (12) −0.0013 (11) 0.0019 (10) 0.0056 (11)
C2 0.0314 (12) 0.0367 (13) 0.0424 (13) −0.0013 (10) 0.0076 (10) 0.0070 (11)
C3 0.0348 (12) 0.0317 (12) 0.0386 (12) 0.0033 (10) 0.0024 (10) −0.0023 (10)
C4 0.0380 (13) 0.0319 (12) 0.0427 (13) −0.0046 (10) 0.0082 (11) 0.0028 (10)
C5 0.0298 (11) 0.0423 (14) 0.0331 (12) 0.0044 (10) −0.0051 (9) −0.0006 (11)
C6 0.0283 (11) 0.0412 (14) 0.0344 (12) 0.0045 (10) −0.0009 (9) −0.0004 (10)
C7 0.0523 (14) 0.0483 (15) 0.0246 (10) 0.0059 (13) −0.0019 (11) −0.0014 (11)
C8 0.0454 (14) 0.0433 (15) 0.0319 (11) 0.0078 (12) −0.0087 (10) 0.0016 (10)
K1 0.0239 (2) 0.0239 (2) 0.0281 (2) −0.00110 (17) −0.00141 (16) 0.00295 (17)
N1 0.0244 (8) 0.0249 (9) 0.0281 (8) −0.0032 (7) 0.0024 (7) 0.0000 (7)
C9 0.0293 (11) 0.0307 (11) 0.0367 (11) −0.0084 (9) −0.0001 (9) −0.0017 (9)
C10 0.0254 (10) 0.0391 (13) 0.0402 (11) −0.0048 (9) −0.0034 (10) −0.0004 (10)
O1 0.0244 (7) 0.0400 (8) 0.0309 (7) −0.0002 (6) −0.0043 (6) 0.0062 (6)
C11 0.0318 (11) 0.0420 (13) 0.0303 (10) 0.0057 (10) −0.0093 (9) 0.0019 (9)
C12 0.0359 (12) 0.0434 (13) 0.0262 (10) 0.0025 (10) −0.0062 (9) 0.0028 (9)
O2 0.0347 (8) 0.0374 (8) 0.0245 (6) −0.0034 (7) 0.0014 (6) 0.0010 (6)
C13 0.0437 (13) 0.0424 (14) 0.0270 (11) −0.0052 (11) 0.0047 (9) 0.0082 (9)
C14 0.0444 (13) 0.0348 (13) 0.0352 (11) −0.0078 (10) 0.0070 (10) 0.0105 (10)
C15 0.0259 (10) 0.0334 (12) 0.0394 (12) −0.0047 (9) 0.0096 (9) −0.0046 (10)
C16 0.0326 (11) 0.0352 (12) 0.0289 (10) −0.0037 (9) 0.0082 (8) −0.0031 (9)
O3 0.0297 (7) 0.0270 (7) 0.0272 (7) −0.0049 (6) 0.0025 (5) −0.0044 (6)
C17 0.0247 (10) 0.0312 (11) 0.0307 (10) 0.0008 (9) 0.0022 (8) −0.0103 (9)
C18 0.0255 (10) 0.0263 (10) 0.0398 (11) 0.0014 (9) 0.0052 (9) −0.0118 (9)
O4 0.0243 (7) 0.0221 (7) 0.0353 (7) 0.0012 (6) 0.0064 (6) −0.0043 (6)
C19 0.0334 (11) 0.0215 (10) 0.0409 (12) −0.0031 (9) 0.0044 (9) −0.0011 (9)
C20 0.0298 (11) 0.0245 (11) 0.0382 (11) −0.0070 (9) 0.0062 (9) −0.0023 (9)
C21 0.030 (3) 0.021 (2) 0.027 (2) −0.012 (2) −0.0007 (19) 0.002 (2)
C22 0.028 (3) 0.0190 (16) 0.023 (4) −0.0051 (18) −0.010 (3) −0.001 (2)
O5 0.022 (2) 0.0204 (8) 0.037 (3) −0.0026 (17) −0.0008 (16) −0.002 (2)
C23 0.025 (3) 0.0245 (11) 0.028 (4) 0.0080 (16) −0.007 (2) 0.0018 (18)
C24 0.0266 (16) 0.0325 (16) 0.0387 (18) 0.0046 (13) 0.0004 (12) 0.0030 (15)
O6 0.0253 (9) 0.0248 (9) 0.0328 (15) 0.0002 (7) 0.0010 (15) 0.0038 (15)
C25 0.0225 (11) 0.0288 (12) 0.040 (5) −0.0003 (10) 0.009 (3) −0.010 (3)
C26 0.0272 (11) 0.032 (3) 0.030 (5) −0.0075 (15) 0.014 (2) −0.002 (3)
C21' 0.030 (3) 0.021 (2) 0.027 (2) −0.012 (2) −0.0007 (19) 0.002 (2)
C22' 0.028 (3) 0.0190 (16) 0.023 (4) −0.0051 (18) −0.010 (3) −0.001 (2)
O5' 0.022 (2) 0.0204 (8) 0.037 (3) −0.0026 (17) −0.0008 (16) −0.002 (2)
C23' 0.025 (3) 0.0245 (11) 0.028 (4) 0.0080 (16) −0.007 (2) 0.0018 (18)
C24' 0.0266 (16) 0.0325 (16) 0.0387 (18) 0.0046 (13) 0.0004 (12) 0.0030 (15)
O6' 0.0253 (9) 0.0248 (9) 0.0328 (15) 0.0002 (7) 0.0010 (15) 0.0038 (15)
C25' 0.0225 (11) 0.0288 (12) 0.040 (5) −0.0003 (10) 0.009 (3) −0.010 (3)
C26' 0.0272 (11) 0.032 (3) 0.030 (5) −0.0075 (15) 0.014 (2) −0.002 (3)
N2 0.0277 (9) 0.0243 (9) 0.0329 (9) −0.0019 (7) 0.0063 (7) −0.0009 (7)

Geometric parameters (Å, º)

Co1—C1 2.025 (2) C14—H14B 0.9900
Co1—C5 2.027 (2) C15—C16 1.506 (3)
Co1—C8 2.029 (2) C15—H15A 0.9900
Co1—C3 2.038 (2) C15—H15B 0.9900
Co1—C2 2.039 (2) C16—O3 1.427 (2)
Co1—C4 2.039 (2) C16—H16A 0.9900
Co1—C7 2.044 (2) C16—H16B 0.9900
Co1—C6 2.044 (2) O3—C17 1.420 (2)
C1—C2 1.397 (3) C17—C18 1.497 (3)
C1—H1A 0.97 (2) C17—H17A 0.9900
C1—H1B 0.99 (2) C17—H17B 0.9900
C2—H2A 0.98 (2) C18—O4 1.428 (2)
C2—H2B 0.97 (2) C18—H18A 0.9900
C3—C4 1.399 (3) C18—H18B 0.9900
C3—H3A 1.02 (2) O4—C19 1.423 (2)
C3—H3B 0.96 (2) C19—C20 1.503 (3)
C4—H4B 0.99 (2) C19—H19A 0.9900
C4—H4A 1.00 (2) C19—H19B 0.9900
C5—C6 1.403 (3) C20—N2 1.474 (2)
C5—H5A 0.96 (2) C20—H20A 0.9900
C5—H5B 1.00 (2) C20—H20B 0.9900
C6—H6A 0.96 (2) C21—C22 1.504 (9)
C6—H6B 0.99 (2) C21—H21A 0.9900
C7—C8 1.403 (3) C21—H21B 0.9900
C7—H7A 0.97 (2) C22—O5 1.417 (8)
C7—H7B 0.96 (3) C22—H22A 0.9900
C8—H8A 0.99 (2) C22—H22B 0.9900
C8—H8B 1.01 (2) O5—C23 1.425 (8)
K1—O5' 2.709 (10) C23—C24 1.491 (8)
K1—O1 2.7893 (13) C23—H23A 0.9900
K1—O6' 2.825 (4) C23—H23B 0.9900
K1—O2 2.8282 (14) C24—O6 1.441 (4)
K1—O5 2.849 (7) C24—H24A 0.9900
K1—O4 2.8586 (13) C24—H24B 0.9900
K1—O6 2.867 (3) O6—C25 1.425 (8)
K1—O3 2.8700 (13) C25—C26 1.509 (8)
K1—N1 2.9811 (16) C25—H25A 0.9900
K1—N2 3.0052 (16) C25—H25B 0.9900
K1—C24' 3.316 (5) C26—N2 1.479 (3)
N1—C15 1.472 (2) C26—H26A 0.9900
N1—C21' 1.474 (3) C26—H26B 0.9900
N1—C21 1.474 (3) C21'—C22' 1.502 (11)
N1—C9 1.474 (2) C21'—H21C 0.9900
C9—C10 1.510 (3) C21'—H21D 0.9900
C9—H9A 0.9900 C22'—O5' 1.404 (11)
C9—H9B 0.9900 C22'—H22C 0.9900
C10—O1 1.415 (2) C22'—H22D 0.9900
C10—H10A 0.9900 O5'—C23' 1.420 (10)
C10—H10B 0.9900 C23'—C24' 1.486 (10)
O1—C11 1.427 (2) C23'—H23C 0.9900
C11—C12 1.490 (3) C23'—H23D 0.9900
C11—H11A 0.9900 C24'—O6' 1.413 (6)
C11—H11B 0.9900 C24'—H24C 0.9900
C12—O2 1.423 (2) C24'—H24D 0.9900
C12—H12A 0.9900 O6'—C25' 1.416 (10)
C12—H12B 0.9900 C25'—C26' 1.500 (11)
O2—C13 1.426 (2) C25'—H25C 0.9900
C13—C14 1.499 (3) C25'—H25D 0.9900
C13—H13A 0.9900 C26'—N2 1.479 (3)
C13—H13B 0.9900 C26'—H26C 0.9900
C14—N2 1.473 (3) C26'—H26D 0.9900
C14—H14A 0.9900
C1—Co1—C5 91.15 (10) O2—C12—C11 109.41 (16)
C1—Co1—C8 90.22 (11) O2—C12—H12A 109.8
C5—Co1—C8 170.81 (9) C11—C12—H12A 109.8
C1—Co1—C3 129.66 (9) O2—C12—H12B 109.8
C5—Co1—C3 94.31 (10) C11—C12—H12B 109.8
C8—Co1—C3 91.80 (10) H12A—C12—H12B 108.2
C1—Co1—C2 40.20 (9) C12—O2—C13 110.95 (15)
C5—Co1—C2 93.68 (10) C12—O2—K1 114.01 (11)
C8—Co1—C2 93.23 (10) C13—O2—K1 113.47 (11)
C3—Co1—C2 89.48 (9) O2—C13—C14 109.25 (16)
C1—Co1—C4 169.78 (9) O2—C13—H13A 109.8
C5—Co1—C4 90.04 (10) C14—C13—H13A 109.8
C8—Co1—C4 90.22 (11) O2—C13—H13B 109.8
C3—Co1—C4 40.13 (9) C14—C13—H13B 109.8
C2—Co1—C4 129.59 (9) H13A—C13—H13B 108.3
C1—Co1—C7 94.43 (11) N2—C14—C13 113.81 (17)
C5—Co1—C7 130.51 (9) N2—C14—H14A 108.8
C8—Co1—C7 40.31 (9) C13—C14—H14A 108.8
C3—Co1—C7 118.08 (10) N2—C14—H14B 108.8
C2—Co1—C7 120.87 (11) C13—C14—H14B 108.8
C4—Co1—C7 92.50 (10) H14A—C14—H14B 107.7
C1—Co1—C6 92.73 (10) N1—C15—C16 114.18 (16)
C5—Co1—C6 40.32 (8) N1—C15—H15A 108.7
C8—Co1—C6 130.53 (9) C16—C15—H15A 108.7
C3—Co1—C6 122.07 (10) N1—C15—H15B 108.7
C2—Co1—C6 119.31 (10) C16—C15—H15B 108.7
C4—Co1—C6 94.74 (10) H15A—C15—H15B 107.6
C7—Co1—C6 90.25 (9) O3—C16—C15 109.01 (15)
C2—C1—Co1 70.43 (13) O3—C16—H16A 109.9
C2—C1—H1A 122.1 (12) C15—C16—H16A 109.9
Co1—C1—H1A 113.0 (12) O3—C16—H16B 109.9
C2—C1—H1B 119.0 (13) C15—C16—H16B 109.9
Co1—C1—H1B 110.1 (12) H16A—C16—H16B 108.3
H1A—C1—H1B 113.4 (17) C17—O3—C16 111.16 (14)
C1—C2—Co1 69.37 (12) C17—O3—K1 115.90 (10)
C1—C2—H2A 118.6 (13) C16—O3—K1 115.05 (10)
Co1—C2—H2A 110.5 (13) O3—C17—C18 109.59 (15)
C1—C2—H2B 119.3 (12) O3—C17—H17A 109.8
Co1—C2—H2B 111.9 (12) C18—C17—H17A 109.8
H2A—C2—H2B 116.7 (18) O3—C17—H17B 109.8
C4—C3—Co1 69.98 (13) C18—C17—H17B 109.8
C4—C3—H3A 119.2 (12) H17A—C17—H17B 108.2
Co1—C3—H3A 111.3 (12) O4—C18—C17 109.76 (15)
C4—C3—H3B 119.4 (12) O4—C18—H18A 109.7
Co1—C3—H3B 110.2 (12) C17—C18—H18A 109.7
H3A—C3—H3B 116.2 (17) O4—C18—H18B 109.7
C3—C4—Co1 69.89 (13) C17—C18—H18B 109.7
C3—C4—H4B 120.5 (13) H18A—C18—H18B 108.2
Co1—C4—H4B 110.2 (14) C19—O4—C18 110.83 (14)
C3—C4—H4A 120.3 (13) C19—O4—K1 115.38 (11)
Co1—C4—H4A 113.3 (13) C18—O4—K1 115.08 (10)
H4B—C4—H4A 113.6 (18) O4—C19—C20 109.88 (16)
C6—C5—Co1 70.50 (12) O4—C19—H19A 109.7
C6—C5—H5A 117.9 (12) C20—C19—H19A 109.7
Co1—C5—H5A 111.3 (12) O4—C19—H19B 109.7
C6—C5—H5B 117.8 (13) C20—C19—H19B 109.7
Co1—C5—H5B 111.7 (13) H19A—C19—H19B 108.2
H5A—C5—H5B 117.6 (18) N2—C20—C19 113.58 (16)
C5—C6—Co1 69.17 (12) N2—C20—H20A 108.8
C5—C6—H6A 118.7 (13) C19—C20—H20A 108.8
Co1—C6—H6A 112.5 (13) N2—C20—H20B 108.8
C5—C6—H6B 119.7 (12) C19—C20—H20B 108.8
Co1—C6—H6B 113.3 (12) H20A—C20—H20B 107.7
H6A—C6—H6B 114.7 (18) N1—C21—C22 117.2 (11)
C8—C7—Co1 69.27 (13) N1—C21—H21A 108.0
C8—C7—H7A 117.6 (13) C22—C21—H21A 108.0
Co1—C7—H7A 110.8 (13) N1—C21—H21B 108.0
C8—C7—H7B 118.9 (15) C22—C21—H21B 108.0
Co1—C7—H7B 113.0 (14) H21A—C21—H21B 107.2
H7A—C7—H7B 117 (2) O5—C22—C21 108.7 (11)
C7—C8—Co1 70.42 (13) O5—C22—H22A 110.0
C7—C8—H8A 119.6 (13) C21—C22—H22A 110.0
Co1—C8—H8A 111.1 (13) O5—C22—H22B 110.0
C7—C8—H8B 121.6 (13) C21—C22—H22B 110.0
Co1—C8—H8B 110.3 (13) H22A—C22—H22B 108.3
H8A—C8—H8B 114.0 (19) C22—O5—C23 111.2 (8)
O5'—K1—O1 92.66 (13) C22—O5—K1 115.6 (7)
O5'—K1—O6' 58.41 (18) C23—O5—K1 116.3 (5)
O1—K1—O6' 134.83 (8) O5—C23—C24 108.2 (7)
O5'—K1—O2 129.08 (15) O5—C23—H23A 110.1
O1—K1—O2 59.82 (4) C24—C23—H23A 110.1
O6'—K1—O2 109.82 (8) O5—C23—H23B 110.1
O5'—K1—O5 9.30 (18) C24—C23—H23B 110.1
O1—K1—O5 101.45 (10) H23A—C23—H23B 108.4
O6'—K1—O5 53.54 (14) O6—C24—C23 110.1 (4)
O2—K1—O5 136.63 (12) O6—C24—H24A 109.6
O5'—K1—O4 129.93 (12) C23—C24—H24A 109.6
O1—K1—O4 132.33 (4) O6—C24—H24B 109.6
O6'—K1—O4 90.69 (8) C23—C24—H24B 109.6
O2—K1—O4 96.66 (4) H24A—C24—H24B 108.1
O5—K1—O4 120.65 (10) C25—O6—C24 109.1 (5)
O5'—K1—O6 61.47 (19) C25—O6—K1 116.7 (5)
O1—K1—O6 122.97 (7) C24—O6—K1 115.2 (2)
O6'—K1—O6 14.70 (6) O6—C25—C26 108.1 (10)
O2—K1—O6 96.58 (6) O6—C25—H25A 110.1
O5—K1—O6 59.07 (14) C26—C25—H25A 110.1
O4—K1—O6 98.83 (6) O6—C25—H25B 110.1
O5'—K1—O3 103.89 (19) C26—C25—H25B 110.1
O1—K1—O3 94.55 (4) H25A—C25—H25B 108.4
O6'—K1—O3 123.92 (8) N2—C26—C25 110.7 (8)
O2—K1—O3 119.06 (4) N2—C26—H26A 109.5
O5—K1—O3 99.91 (13) C25—C26—H26A 109.5
O4—K1—O3 59.22 (4) N2—C26—H26B 109.5
O6—K1—O3 138.59 (6) C25—C26—H26B 109.5
O5'—K1—N1 59.06 (18) H26A—C26—H26B 108.1
O1—K1—N1 60.53 (4) N1—C21'—C22' 112.7 (15)
O6'—K1—N1 115.63 (8) N1—C21'—H21C 109.1
O2—K1—N1 120.02 (4) C22'—C21'—H21C 109.1
O5—K1—N1 62.32 (13) N1—C21'—H21D 109.1
O4—K1—N1 119.03 (4) C22'—C21'—H21D 109.1
O6—K1—N1 120.53 (7) H21C—C21'—H21D 107.8
O3—K1—N1 60.55 (4) O5'—C22'—C21' 110.5 (14)
O5'—K1—N2 120.31 (18) O5'—C22'—H22C 109.6
O1—K1—N2 120.60 (4) C21'—C22'—H22C 109.6
O6'—K1—N2 63.52 (8) O5'—C22'—H22D 109.6
O2—K1—N2 61.12 (4) C21'—C22'—H22D 109.6
O5—K1—N2 116.90 (13) H22C—C22'—H22D 108.1
O4—K1—N2 60.49 (4) C22'—O5'—C23' 113.6 (11)
O6—K1—N2 58.86 (7) C22'—O5'—K1 126.1 (10)
O3—K1—N2 119.15 (4) C23'—O5'—K1 116.0 (6)
N1—K1—N2 178.86 (5) O5'—C23'—C24' 111.0 (9)
O5'—K1—C24' 45.5 (2) O5'—C23'—H23C 109.4
O1—K1—C24' 109.94 (9) C24'—C23'—H23C 109.4
O6'—K1—C24' 25.00 (11) O5'—C23'—H23D 109.4
O2—K1—C24' 101.13 (9) C24'—C23'—H23D 109.4
O5—K1—C24' 45.17 (16) H23C—C23'—H23D 108.0
O4—K1—C24' 115.34 (9) O6'—C24'—C23' 108.8 (6)
O6—K1—C24' 18.15 (9) O6'—C24'—K1 57.7 (2)
O3—K1—C24' 139.61 (9) C23'—C24'—K1 87.2 (5)
N1—K1—C24' 103.85 (9) O6'—C24'—H24C 109.9
N2—K1—C24' 75.67 (9) C23'—C24'—H24C 109.9
C15—N1—C21' 110.9 (8) K1—C24'—H24C 162.1
C15—N1—C21 108.0 (6) O6'—C24'—H24D 109.9
C15—N1—C9 110.88 (15) C23'—C24'—H24D 109.9
C21'—N1—C9 104.7 (10) K1—C24'—H24D 68.5
C21—N1—C9 113.7 (7) H24C—C24'—H24D 108.3
C15—N1—K1 110.52 (11) C24'—O6'—C25' 116.0 (6)
C21'—N1—K1 111.3 (7) C24'—O6'—K1 97.3 (3)
C21—N1—K1 105.3 (6) C25'—O6'—K1 115.8 (7)
C9—N1—K1 108.37 (11) O6'—C25'—C26' 114.2 (13)
N1—C9—C10 113.87 (16) O6'—C25'—H25C 108.7
N1—C9—H9A 108.8 C26'—C25'—H25C 108.7
C10—C9—H9A 108.8 O6'—C25'—H25D 108.7
N1—C9—H9B 108.8 C26'—C25'—H25D 108.7
C10—C9—H9B 108.8 H25C—C25'—H25D 107.6
H9A—C9—H9B 107.7 N2—C26'—C25' 117.8 (11)
O1—C10—C9 108.46 (16) N2—C26'—H26C 107.9
O1—C10—H10A 110.0 C25'—C26'—H26C 107.9
C9—C10—H10A 110.0 N2—C26'—H26D 107.9
O1—C10—H10B 110.0 C25'—C26'—H26D 107.9
C9—C10—H10B 110.0 H26C—C26'—H26D 107.2
H10A—C10—H10B 108.4 C14—N2—C20 110.02 (16)
C10—O1—C11 112.87 (15) C14—N2—C26 104.9 (5)
C10—O1—K1 120.18 (11) C20—N2—C26 111.0 (8)
C11—O1—K1 117.25 (11) C14—N2—C26' 116.5 (7)
O1—C11—C12 108.69 (16) C20—N2—C26' 107.3 (11)
O1—C11—H11A 110.0 C14—N2—K1 108.69 (11)
C12—C11—H11A 110.0 C20—N2—K1 109.94 (11)
O1—C11—H11B 110.0 C26—N2—K1 112.2 (6)
C12—C11—H11B 110.0 C26'—N2—K1 104.2 (8)
H11A—C11—H11B 108.3
C5—Co1—C1—C2 −94.34 (15) O6—K1—O4—C18 −160.64 (13)
C8—Co1—C1—C2 94.75 (16) O3—K1—O4—C18 −18.37 (11)
C3—Co1—C1—C2 2.2 (2) N1—K1—O4—C18 −28.25 (13)
C4—Co1—C1—C2 2.3 (6) N2—K1—O4—C18 152.94 (13)
C7—Co1—C1—C2 134.88 (16) C24'—K1—O4—C18 −152.70 (14)
C6—Co1—C1—C2 −134.65 (15) C18—O4—C19—C20 174.28 (16)
C5—Co1—C2—C1 87.43 (16) K1—O4—C19—C20 −52.68 (18)
C8—Co1—C2—C1 −86.51 (16) O4—C19—C20—N2 65.2 (2)
C3—Co1—C2—C1 −178.28 (16) C15—N1—C21—C22 −166.3 (9)
C4—Co1—C2—C1 −179.46 (15) C9—N1—C21—C22 70.3 (12)
C7—Co1—C2—C1 −55.39 (18) K1—N1—C21—C22 −48.2 (13)
C6—Co1—C2—C1 54.58 (18) N1—C21—C22—O5 67.7 (15)
C1—Co1—C3—C4 179.97 (15) C21—C22—O5—C23 178.2 (9)
C5—Co1—C3—C4 −84.93 (16) C21—C22—O5—K1 −46.3 (11)
C8—Co1—C3—C4 88.20 (16) O5'—K1—O5—C22 −50.1 (19)
C2—Co1—C3—C4 −178.58 (16) O1—K1—O5—C22 −30.7 (7)
C7—Co1—C3—C4 56.20 (18) O6'—K1—O5—C22 −168.8 (7)
C6—Co1—C3—C4 −53.70 (18) O2—K1—O5—C22 −88.5 (7)
C1—Co1—C4—C3 −0.1 (6) O4—K1—O5—C22 126.0 (6)
C5—Co1—C4—C3 96.65 (15) O6—K1—O5—C22 −152.4 (7)
C8—Co1—C4—C3 −92.54 (15) O3—K1—O5—C22 66.0 (6)
C2—Co1—C4—C3 1.8 (2) N1—K1—O5—C22 17.0 (6)
C7—Co1—C4—C3 −132.79 (15) N2—K1—O5—C22 −164.0 (6)
C6—Co1—C4—C3 136.74 (15) C24'—K1—O5—C22 −137.5 (7)
C1—Co1—C5—C6 −92.86 (16) O5'—K1—O5—C23 83 (2)
C8—Co1—C5—C6 5.7 (7) O1—K1—O5—C23 102.5 (4)
C3—Co1—C5—C6 137.23 (15) O6'—K1—O5—C23 −35.7 (4)
C2—Co1—C5—C6 −133.02 (16) O2—K1—O5—C23 44.6 (5)
C4—Co1—C5—C6 97.29 (16) O4—K1—O5—C23 −100.8 (4)
C7—Co1—C5—C6 4.0 (2) O6—K1—O5—C23 −19.3 (4)
C1—Co1—C6—C5 88.57 (16) O3—K1—O5—C23 −160.8 (4)
C8—Co1—C6—C5 −178.81 (16) N1—K1—O5—C23 150.2 (5)
C3—Co1—C6—C5 −53.05 (18) N2—K1—O5—C23 −30.8 (5)
C2—Co1—C6—C5 56.79 (18) C24'—K1—O5—C23 −4.4 (4)
C4—Co1—C6—C5 −84.46 (16) C22—O5—C23—C24 −174.9 (7)
C7—Co1—C6—C5 −176.99 (16) K1—O5—C23—C24 50.0 (6)
C1—Co1—C7—C8 −85.10 (17) O5—C23—C24—O6 −63.4 (6)
C5—Co1—C7—C8 179.58 (16) C23—C24—O6—C25 179.7 (6)
C3—Co1—C7—C8 54.97 (19) C23—C24—O6—K1 46.1 (5)
C2—Co1—C7—C8 −52.91 (19) O5'—K1—O6—C25 −155.0 (4)
C4—Co1—C7—C8 87.38 (17) O1—K1—O6—C25 131.8 (4)
C6—Co1—C7—C8 −177.86 (17) O6'—K1—O6—C25 −81.1 (6)
C1—Co1—C8—C7 96.59 (17) O2—K1—O6—C25 73.7 (4)
C5—Co1—C8—C7 −2.0 (8) O5—K1—O6—C25 −144.7 (4)
C3—Co1—C8—C7 −133.72 (17) O4—K1—O6—C25 −24.1 (4)
C2—Co1—C8—C7 136.70 (17) O3—K1—O6—C25 −76.8 (4)
C4—Co1—C8—C7 −93.61 (17) N1—K1—O6—C25 −155.5 (4)
C6—Co1—C8—C7 2.8 (2) N2—K1—O6—C25 23.3 (4)
O5'—K1—N1—C15 141.1 (2) C24'—K1—O6—C25 179.5 (5)
O1—K1—N1—C15 −105.27 (13) O5'—K1—O6—C24 −25.0 (3)
O6'—K1—N1—C15 125.90 (14) O1—K1—O6—C24 −98.2 (2)
O2—K1—N1—C15 −98.74 (12) O6'—K1—O6—C24 48.8 (4)
O5—K1—N1—C15 131.10 (17) O2—K1—O6—C24 −156.3 (2)
O4—K1—N1—C15 19.55 (13) O5—K1—O6—C24 −14.7 (2)
O6—K1—N1—C15 141.63 (13) O4—K1—O6—C24 105.9 (2)
O3—K1—N1—C15 9.80 (11) O3—K1—O6—C24 53.2 (3)
N2—K1—N1—C15 84 (2) N1—K1—O6—C24 −25.6 (3)
C24'—K1—N1—C15 149.41 (14) N2—K1—O6—C24 153.3 (3)
O5'—K1—N1—C21' 17.4 (10) C24'—K1—O6—C24 −50.5 (3)
O1—K1—N1—C21' 131.0 (10) C24—O6—C25—C26 171.8 (7)
O6'—K1—N1—C21' 2.2 (10) K1—O6—C25—C26 −55.4 (7)
O2—K1—N1—C21' 137.6 (10) O6—C25—C26—N2 65.9 (15)
O5—K1—N1—C21' 7.4 (10) C15—N1—C21'—C22' −166.0 (11)
O4—K1—N1—C21' −104.1 (10) C9—N1—C21'—C22' 74.3 (15)
O6—K1—N1—C21' 17.9 (10) K1—N1—C21'—C22' −42.5 (17)
O3—K1—N1—C21' −113.9 (10) N1—C21'—C22'—O5' 52 (2)
N2—K1—N1—C21' −39 (3) C21'—C22'—O5'—C23' 168.0 (13)
C24'—K1—N1—C21' 25.7 (10) C21'—C22'—O5'—K1 −36.6 (17)
O5'—K1—N1—C21 24.8 (7) O1—K1—O5'—C22' −42.3 (10)
O1—K1—N1—C21 138.4 (7) O6'—K1—O5'—C22' 174.6 (10)
O6'—K1—N1—C21 9.6 (7) O2—K1—O5'—C22' −94.6 (10)
O2—K1—N1—C21 144.9 (7) O5—K1—O5'—C22' 119 (2)
O5—K1—N1—C21 14.8 (7) O4—K1—O5'—C22' 114.4 (10)
O4—K1—N1—C21 −96.8 (7) O6—K1—O5'—C22' −168.8 (10)
O6—K1—N1—C21 25.3 (7) O3—K1—O5'—C22' 53.1 (10)
O3—K1—N1—C21 −106.5 (7) N1—K1—O5'—C22' 10.7 (10)
N2—K1—N1—C21 −32 (2) N2—K1—O5'—C22' −170.4 (10)
C24'—K1—N1—C21 33.1 (7) C24'—K1—O5'—C22' −157.9 (10)
O5'—K1—N1—C9 −97.22 (19) O1—K1—O5'—C23' 112.6 (6)
O1—K1—N1—C9 16.42 (11) O6'—K1—O5'—C23' −30.5 (6)
O6'—K1—N1—C9 −112.41 (14) O2—K1—O5'—C23' 60.2 (7)
O2—K1—N1—C9 22.94 (13) O5—K1—O5'—C23' −86 (2)
O5—K1—N1—C9 −107.22 (17) O4—K1—O5'—C23' −90.8 (7)
O4—K1—N1—C9 141.23 (11) O6—K1—O5'—C23' −13.9 (6)
O6—K1—N1—C9 −96.68 (13) O3—K1—O5'—C23' −152.1 (6)
O3—K1—N1—C9 131.49 (13) N1—K1—O5'—C23' 165.6 (7)
N2—K1—N1—C9 −154 (2) N2—K1—O5'—C23' −15.5 (7)
C24'—K1—N1—C9 −88.90 (14) C24'—K1—O5'—C23' −3.1 (6)
C15—N1—C9—C10 74.3 (2) C22'—O5'—C23'—C24' 163.2 (10)
C21'—N1—C9—C10 −166.1 (8) K1—O5'—C23'—C24' 5.2 (10)
C21—N1—C9—C10 −163.9 (6) O5'—C23'—C24'—O6' 50.6 (9)
K1—N1—C9—C10 −47.21 (18) O5'—C23'—C24'—K1 −3.9 (8)
N1—C9—C10—O1 62.7 (2) O5'—K1—C24'—O6' −111.7 (3)
C9—C10—O1—C11 170.04 (16) O1—K1—C24'—O6' 175.0 (2)
C9—C10—O1—K1 −44.9 (2) O2—K1—C24'—O6' 113.3 (2)
O5'—K1—O1—C10 67.5 (2) O5—K1—C24'—O6' −98.6 (3)
O6'—K1—O1—C10 113.59 (17) O4—K1—C24'—O6' 10.4 (3)
O2—K1—O1—C10 −157.85 (15) O6—K1—C24'—O6' 36.3 (3)
O5—K1—O1—C10 64.40 (19) O3—K1—C24'—O6' −61.1 (3)
O4—K1—O1—C10 −88.23 (14) N1—K1—C24'—O6' −121.7 (2)
O6—K1—O1—C10 124.81 (15) N2—K1—C24'—O6' 57.2 (2)
O3—K1—O1—C10 −36.68 (14) O5'—K1—C24'—C23' 2.6 (5)
N1—K1—O1—C10 15.61 (13) O1—K1—C24'—C23' −70.7 (5)
N2—K1—O1—C10 −164.61 (13) O6'—K1—C24'—C23' 114.3 (6)
C24'—K1—O1—C10 110.63 (16) O2—K1—C24'—C23' −132.4 (5)
O5'—K1—O1—C11 −148.9 (2) O5—K1—C24'—C23' 15.7 (5)
O6'—K1—O1—C11 −102.79 (16) O4—K1—C24'—C23' 124.7 (5)
O2—K1—O1—C11 −14.23 (12) O6—K1—C24'—C23' 150.6 (7)
O5—K1—O1—C11 −151.98 (18) O3—K1—C24'—C23' 53.2 (5)
O4—K1—O1—C11 55.39 (14) N1—K1—C24'—C23' −7.4 (5)
O6—K1—O1—C11 −91.56 (14) N2—K1—C24'—C23' 171.6 (5)
O3—K1—O1—C11 106.94 (12) C23'—C24'—O6'—C25' 162.5 (9)
N1—K1—O1—C11 159.24 (14) K1—C24'—O6'—C25' −123.5 (8)
N2—K1—O1—C11 −20.99 (14) C23'—C24'—O6'—K1 −74.0 (6)
C24'—K1—O1—C11 −105.75 (15) O5'—K1—O6'—C24' 51.1 (3)
C10—O1—C11—C12 −168.94 (17) O1—K1—O6'—C24' −6.6 (3)
K1—O1—C11—C12 44.87 (19) O2—K1—O6'—C24' −73.3 (3)
O1—C11—C12—O2 −63.1 (2) O5—K1—O6'—C24' 60.7 (3)
C11—C12—O2—C13 −179.82 (17) O4—K1—O6'—C24' −170.6 (2)
C11—C12—O2—K1 50.57 (19) O6—K1—O6'—C24' −46.7 (4)
O5'—K1—O2—C12 46.6 (2) O3—K1—O6'—C24' 136.8 (2)
O1—K1—O2—C12 −19.64 (12) N1—K1—O6'—C24' 66.4 (3)
O6'—K1—O2—C12 111.45 (14) N2—K1—O6'—C24' −114.4 (3)
O5—K1—O2—C12 54.0 (2) O5'—K1—O6'—C25' 174.7 (6)
O4—K1—O2—C12 −155.39 (12) O1—K1—O6'—C25' 117.0 (5)
O6—K1—O2—C12 104.87 (13) O2—K1—O6'—C25' 50.3 (5)
O3—K1—O2—C12 −97.02 (12) O5—K1—O6'—C25' −175.7 (5)
N1—K1—O2—C12 −26.21 (13) O4—K1—O6'—C25' −47.0 (5)
N2—K1—O2—C12 153.72 (13) O6—K1—O6'—C25' 76.9 (6)
C24'—K1—O2—C12 87.09 (15) O3—K1—O6'—C25' −99.6 (5)
O5'—K1—O2—C13 −81.8 (2) N1—K1—O6'—C25' −170.0 (5)
O1—K1—O2—C13 −147.97 (13) N2—K1—O6'—C25' 9.1 (5)
O6'—K1—O2—C13 −16.88 (15) C24'—K1—O6'—C25' 123.6 (6)
O5—K1—O2—C13 −74.3 (2) C24'—O6'—C25'—C26' 76.4 (14)
O4—K1—O2—C13 76.27 (13) K1—O6'—C25'—C26' −36.8 (13)
O6—K1—O2—C13 −23.46 (14) O6'—C25'—C26'—N2 62 (2)
O3—K1—O2—C13 134.64 (12) C13—C14—N2—C20 −160.38 (17)
N1—K1—O2—C13 −154.55 (12) C13—C14—N2—C26 80.2 (8)
N2—K1—O2—C13 25.38 (12) C13—C14—N2—C26' 77.3 (12)
C24'—K1—O2—C13 −41.25 (15) C13—C14—N2—K1 −40.0 (2)
C12—O2—C13—C14 172.92 (17) C19—C20—N2—C14 77.9 (2)
K1—O2—C13—C14 −57.19 (19) C19—C20—N2—C26 −166.5 (5)
O2—C13—C14—N2 67.6 (2) C19—C20—N2—C26' −154.5 (6)
C21'—N1—C15—C16 82.6 (9) C19—C20—N2—K1 −41.77 (19)
C21—N1—C15—C16 73.3 (7) C25—C26—N2—C14 −161.0 (10)
C9—N1—C15—C16 −161.52 (17) C25—C26—N2—C20 80.2 (13)
K1—N1—C15—C16 −41.33 (19) C25—C26—N2—K1 −43.2 (15)
N1—C15—C16—O3 64.8 (2) C25'—C26'—N2—C14 −166.7 (14)
C15—C16—O3—C17 172.92 (15) C25'—C26'—N2—C20 70 (2)
C15—C16—O3—K1 −52.83 (18) C25'—C26'—N2—K1 −47 (2)
O5'—K1—O3—C17 113.19 (17) O5'—K1—N2—C14 128.55 (19)
O1—K1—O3—C17 −152.93 (12) O1—K1—N2—C14 14.46 (14)
O6'—K1—O3—C17 52.14 (15) O6'—K1—N2—C14 142.81 (15)
O2—K1—O3—C17 −95.13 (12) O2—K1—N2—C14 7.78 (11)
O5—K1—O3—C17 104.59 (15) O5—K1—N2—C14 138.41 (16)
O4—K1—O3—C17 −15.30 (11) O4—K1—N2—C14 −109.89 (13)
O6—K1—O3—C17 50.80 (16) O6—K1—N2—C14 126.87 (14)
N1—K1—O3—C17 154.78 (13) O3—K1—N2—C14 −101.34 (12)
N2—K1—O3—C17 −23.96 (13) N1—K1—N2—C14 −175 (25)
C24'—K1—O3—C17 78.64 (18) C24'—K1—N2—C14 119.41 (15)
O5'—K1—O3—C16 −18.86 (18) O5'—K1—N2—C20 −110.98 (19)
O1—K1—O3—C16 75.01 (12) O1—K1—N2—C20 134.93 (11)
O6'—K1—O3—C16 −79.91 (15) O6'—K1—N2—C20 −96.72 (14)
O2—K1—O3—C16 132.81 (11) O2—K1—N2—C20 128.26 (13)
O5—K1—O3—C16 −27.46 (15) O5—K1—N2—C20 −101.12 (16)
O4—K1—O3—C16 −147.35 (13) O4—K1—N2—C20 10.59 (11)
O6—K1—O3—C16 −81.25 (15) O6—K1—N2—C20 −112.65 (14)
N1—K1—O3—C16 22.73 (11) O3—K1—N2—C20 19.13 (13)
N2—K1—O3—C16 −156.01 (11) N1—K1—N2—C20 −55 (2)
C24'—K1—O3—C16 −53.42 (18) C24'—K1—N2—C20 −120.12 (15)
C16—O3—C17—C18 179.74 (15) O5'—K1—N2—C26 13.0 (8)
K1—O3—C17—C18 45.90 (17) O1—K1—N2—C26 −101.1 (8)
O3—C17—C18—O4 −63.4 (2) O6'—K1—N2—C26 27.3 (8)
C17—C18—O4—C19 −177.62 (16) O2—K1—N2—C26 −107.7 (8)
C17—C18—O4—K1 49.20 (18) O5—K1—N2—C26 22.9 (8)
O5'—K1—O4—C19 128.3 (3) O4—K1—N2—C26 134.6 (8)
O1—K1—O4—C19 −84.10 (12) O6—K1—N2—C26 11.4 (8)
O6'—K1—O4—C19 80.62 (14) O3—K1—N2—C26 143.1 (8)
O2—K1—O4—C19 −29.43 (12) N1—K1—N2—C26 69 (2)
O5—K1—O4—C19 127.49 (19) C24'—K1—N2—C26 3.9 (8)
O6—K1—O4—C19 68.32 (13) O5'—K1—N2—C26' 3.7 (10)
O3—K1—O4—C19 −149.41 (13) O1—K1—N2—C26' −110.4 (10)
N1—K1—O4—C19 −159.29 (11) O6'—K1—N2—C26' 18.0 (10)
N2—K1—O4—C19 21.90 (11) O2—K1—N2—C26' −117.1 (10)
C24'—K1—O4—C19 76.26 (15) O5—K1—N2—C26' 13.6 (10)
O5'—K1—O4—C18 −100.7 (3) O4—K1—N2—C26' 125.3 (10)
O1—K1—O4—C18 46.94 (13) O6—K1—N2—C26' 2.0 (10)
O6'—K1—O4—C18 −148.34 (14) O3—K1—N2—C26' 133.8 (10)
O2—K1—O4—C18 101.61 (12) N1—K1—N2—C26' 60 (3)
O5—K1—O4—C18 −101.47 (19) C24'—K1—N2—C26' −5.4 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C24—H24A···O5i 0.99 2.59 3.326 (6) 131

Symmetry code: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2495).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brennessel, W. W. (2009). Doctoral thesis, University of Minnesota, Minneapolis, MN, USA.
  4. Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268–7271. [DOI] [PubMed]
  5. Bruker (2003). SAINT and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Dias, H. V. R., Fianchini, M., Cundari, T. R. & Campana, C. F. (2008). Angew. Chem. Int. Ed. 47, 556–559. [DOI] [PubMed]
  7. Howard, J. A. K., Spencer, J. L. & Mason, S. A. (1983). Proc. R. Soc. London Ser. A, 386, 145–161.
  8. Jonas, K. (1979). US Patent No. 4 169 845.
  9. Jonas, K. (1981). Adv. Organomet. Chem. 19, 97–122.
  10. Jonas, K. (1984). Pure Appl. Chem. 56, 63–80.
  11. Jonas, K. (1985). Angew. Chem. Int. Ed. Engl. 24, 295–311.
  12. Jonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520–537.
  13. Jonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550–551.
  14. Lide, D. R. (2003). CRC Handbook of Chemistry and Physics, 83rd ed. Boca Raton, FL: CRC Press.
  15. Reisinger, A., Trapp, N., Knapp, C., Himmel, D., Breher, F., Rüegger, H. & Krossing, I. (2009). Chem. Eur. J. 15, 9505–9520. [DOI] [PubMed]
  16. Santiso-Quiñones, G., Reisinger, A., Slattery, J. & Krossing, I. (2007). Chem. Commun. pp. 5046–5048. [DOI] [PubMed]
  17. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038287/su2495sup1.cif

e-68-m1257-sup1.cif (47KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038287/su2495Isup2.hkl

e-68-m1257-Isup2.hkl (343.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES