Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 15;68(Pt 10):m1259. doi: 10.1107/S1600536812038160

(2,9-Dimethyl-1,10-phenanthroline-κ2 N,N′)bis­(thio­cyanato-κS)mercury(II)

Ismail Warad a, Taibi Ben Hadda b, Belkheir Hammouti c, Salim F Haddad d,*
PMCID: PMC3470145  PMID: 23125589

Abstract

The asymmetric unit of the title compound, [Hg(SCN)2(C14H12N2)], contains two complex mol­ecules in which the HgII atoms are both four-coordinated in a distorted tetra­hedral configuration by two N atoms from a chelating 2,9-dimethyl-1,10-phenanthroline ligand and by two S atoms from two thio­cyanate anions. The 1,10-phenanthroline ligand is slightly folded for one complex, the dihedral angle between the pyridine planes being 5.3 (1)°. In contrast it is nearly planar [0.5 (1)°] as it complexes with the other HgII atom. The thio­cyanate ligands are virtually linear and the S atom is bonded to HgII with N⋯S—Hg angles ranging from 99.3 (1) to 103.5 (1)°. Despite the presence of six aromatic rings in the asymmetric unit, there are no significant inter­molecular π–π contacts between phenanthroline ligands as the centroid–centroid distance of the closest contact between six-membered rings is 4.11 (1) A°.

Related literature  

For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For therapeutic applications of similar compounds, see: Miller et al. (1999); Lange et al. (2000); Bodoki et al. (2009).graphic file with name e-68-m1259-scheme1.jpg

Experimental  

Crystal data  

  • [Hg(NCS)2(C14H12N2)]

  • M r = 525.01

  • Triclinic, Inline graphic

  • a = 8.1593 (4) Å

  • b = 11.2985 (5) Å

  • c = 18.9456 (9) Å

  • α = 77.205 (4)°

  • β = 84.015 (4)°

  • γ = 89.802 (4)°

  • V = 1693.55 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.34 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.15 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.122, T max = 0.246

  • 11206 measured reflections

  • 5985 independent reflections

  • 4876 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.066

  • S = 1.02

  • 5985 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038160/vn2049sup1.cif

e-68-m1259-sup1.cif (37.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038160/vn2049Isup2.hkl

e-68-m1259-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Hg1—N1 2.396 (4)
Hg1—N2 2.395 (4)
Hg1—S1 2.4201 (16)
Hg1—S2 2.4488 (16)
Hg2—N5 2.384 (4)
Hg2—N6 2.362 (4)
Hg2—S3 2.4741 (16)
Hg2—S4 2.4013 (18)

Acknowledgments

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. The X-ray structural work was performed at the Hamdi Mango Center for Scientific Research at The University of Jordan.

supplementary crystallographic information

Comment

Transition metal complexes using 1,10-phenanthroline (phen) and their modified derivatives as ligands are particularly attractive species for the design and development of novel diagnostic and therapeutic agents, that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The reaction of Hg(SCN)2, with dmphen = 2,9-dimethyl-1,10-phenanthroline ligand yields Hg(SCN)2(dmphen) mixed ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemistry and geometry of ligand and the type of co-ligand SCN (Lange et al., 2000). Here we report the synthesis and crystal structure of a new HgII complex, [Hg(SCN)2(dmphen)].

The molecular structure of Hg(SCN)2(dmphen), along with the numbering scheme, is shown in Fig. 1. The two HgII cations are located on general positions and coordinated to two nitrogen atoms of one dmphen bidentate ligand and two SCN ions. A similar coordination geometry around the central atom has been observed in other metal complexes involving the same dmphen ligand such as [HgBr2(dmphen)] (Alizadeh et al., 2009), [CuCl2(dmphen)] (Wang & Zhong, 2009), [CdI2(dmphen)] (Warad et al., 2011), and [CdBr2(dmphen)] (Warad et al., 2011).

One of the two 2,9-dimethyl-1,10-phenanthroline ligands, the one bonded to Hg1, is folded by 5.3 (1)° while the other bonded to Hg2 is planar. Such conjugate double bond systems are expected to be planar. The probable reason comes from packing considerations. The soft Hg bonds to the soft S atom of SCN- as expected. the variations in the approach angle, 99.3 (1) to 103.5 (1)° should also be attributed to packing considerations.

Experimental

The title compound was prepared by a procedure similar to that used for [CdI2(dmphen)] (Warad et al., 2011). A mixture of mercury thiosyanode (Hg(SCN)2, 50 mg, 0.16 mmol) in methanol (10 ml) and dmphen (32.8 mg, 0.16 mmol) in dichloromethane (5 ml) is stirred for 2 h at room temperature. The obtained solution was concentrated to about 1 ml under reduced pressure and mixed to 40 ml of n-hexane. This caused the precipitation of a white powder of 75 mg, (90% yield) which was filtered, dried and used for the preparation of colorless prisms of [Hg(SCN)2(dmphen)] by slow diffusion of n-hexane into a solution of the complex in dichloromethane. All chemicals were purchased from Acros/Belgium.

Refinement

All nonhydrogen atoms were refined anisotropically. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) except for methyl groups where Uiso(H)= 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius.

Crystal data

[Hg(NCS)2(C14H12N2)] Z = 4
Mr = 525.01 F(000) = 992
Triclinic, P1 Dx = 2.059 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1593 (4) Å Cell parameters from 5117 reflections
b = 11.2985 (5) Å θ = 3.1–29.2°
c = 18.9456 (9) Å µ = 9.34 mm1
α = 77.205 (4)° T = 293 K
β = 84.015 (4)° Parallelpiped, colourless
γ = 89.802 (4)° 0.4 × 0.2 × 0.15 mm
V = 1693.55 (14) Å3

Data collection

Agilent Xcalibur Eos diffractometer 5985 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4876 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 16.0534 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −9→5
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→13
Tmin = 0.122, Tmax = 0.246 l = −22→22
11206 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0191P)2] where P = (Fo2 + 2Fc2)/3
5985 reflections (Δ/σ)max < 0.001
419 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −1.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.18189 (3) 0.13738 (2) 0.159189 (11) 0.04673 (8)
Hg2 0.39752 (3) 0.29806 (2) 0.364029 (11) 0.05009 (8)
S3 0.1361 (2) 0.30784 (17) 0.30774 (8) 0.0606 (5)
S4 0.6423 (2) 0.18246 (17) 0.35203 (10) 0.0698 (5)
S1 0.0329 (2) −0.00199 (18) 0.26099 (8) 0.0716 (6)
S2 0.3866 (2) 0.30366 (18) 0.13101 (10) 0.0722 (6)
N5 0.4455 (5) 0.5081 (4) 0.3585 (2) 0.0404 (11)
N6 0.2922 (6) 0.3419 (4) 0.4762 (2) 0.0447 (12)
N2 0.0222 (5) 0.2220 (4) 0.0616 (2) 0.0322 (10)
N1 0.2267 (5) 0.0263 (4) 0.0651 (2) 0.0310 (10)
C11 0.1771 (6) 0.0853 (4) −0.0005 (2) 0.0290 (11)
C28 0.2868 (7) 0.4619 (6) 0.4772 (3) 0.0436 (14)
C10 −0.0780 (7) 0.3145 (5) 0.0613 (3) 0.0403 (13)
C12 0.0728 (6) 0.1882 (4) −0.0015 (2) 0.0302 (11)
C7 0.0207 (6) 0.2508 (5) −0.0687 (3) 0.0370 (13)
C27 0.3688 (7) 0.5490 (5) 0.4153 (3) 0.0411 (14)
N4 0.3853 (7) 0.3735 (5) −0.0213 (3) 0.0690 (16)
C17 0.5215 (7) 0.5864 (6) 0.3020 (3) 0.0513 (16)
C1 0.3147 (6) −0.0736 (5) 0.0678 (3) 0.0387 (13)
C16 0.3852 (7) 0.3451 (5) 0.0410 (4) 0.0497 (15)
C4 0.2219 (6) 0.0459 (5) −0.0656 (3) 0.0376 (13)
C3 0.3154 (6) −0.0589 (5) −0.0603 (3) 0.0438 (14)
H3A 0.3468 −0.0883 −0.1017 0.053*
C23 0.2056 (8) 0.5034 (6) 0.5351 (3) 0.0526 (16)
C2 0.3609 (6) −0.1184 (5) 0.0055 (3) 0.0486 (15)
H2A 0.4224 −0.1885 0.0089 0.058*
C8 −0.0848 (7) 0.3477 (5) −0.0666 (3) 0.0479 (15)
H8A −0.1211 0.3912 −0.1096 0.057*
C6 0.0741 (7) 0.2105 (6) −0.1336 (3) 0.0464 (15)
H6A 0.0423 0.2528 −0.1779 0.056*
C5 0.1695 (7) 0.1125 (6) −0.1319 (3) 0.0461 (15)
H5A 0.2016 0.0880 −0.1750 0.055*
C9 −0.1353 (7) 0.3796 (5) −0.0029 (3) 0.0490 (15)
H9A −0.2068 0.4437 −0.0019 0.059*
C19 0.4423 (8) 0.7529 (6) 0.3558 (4) 0.0645 (19)
H19A 0.4405 0.8359 0.3538 0.077*
C15 0.1360 (8) 0.0123 (6) 0.3288 (3) 0.0556 (17)
C14 −0.1309 (7) 0.3473 (5) 0.1335 (3) 0.0568 (17)
H14A −0.1896 0.2797 0.1658 0.085*
H14B −0.2014 0.4162 0.1258 0.085*
H14C −0.0353 0.3668 0.1546 0.085*
C20 0.3639 (7) 0.6725 (6) 0.4161 (3) 0.0488 (15)
N8 0.5652 (8) 0.0478 (6) 0.2516 (3) 0.0817 (19)
C18 0.5223 (8) 0.7107 (6) 0.2993 (3) 0.0613 (18)
H18A 0.5765 0.7646 0.2594 0.074*
C31 0.1355 (8) 0.4561 (8) 0.2732 (3) 0.0620 (19)
C13 0.3626 (7) −0.1385 (5) 0.1401 (3) 0.0534 (16)
H13A 0.4021 −0.0807 0.1649 0.080*
H13B 0.4481 −0.1947 0.1331 0.080*
H13C 0.2685 −0.1819 0.1687 0.080*
C32 0.5939 (8) 0.1038 (6) 0.2922 (3) 0.0562 (16)
C26 0.2191 (8) 0.2611 (6) 0.5327 (3) 0.0579 (18)
N3 0.2032 (8) 0.0173 (6) 0.3789 (3) 0.084 (2)
N7 0.1302 (8) 0.5602 (6) 0.2495 (3) 0.084 (2)
C29 0.6022 (9) 0.5361 (6) 0.2401 (3) 0.075 (2)
H29A 0.6589 0.4633 0.2591 0.112*
H29B 0.6795 0.5950 0.2103 0.112*
H29C 0.5195 0.5179 0.2113 0.112*
C22 0.2020 (9) 0.6313 (7) 0.5327 (4) 0.070 (2)
H22A 0.1451 0.6589 0.5709 0.085*
C21 0.2791 (9) 0.7110 (7) 0.4766 (4) 0.068 (2)
H21A 0.2775 0.7932 0.4769 0.082*
C25 0.1346 (9) 0.2991 (7) 0.5926 (3) 0.072 (2)
H25A 0.0827 0.2419 0.6315 0.086*
C24 0.1290 (7) 0.4172 (5) 0.5935 (2) 0.069 (2)
H24A 0.0740 0.4419 0.6332 0.082*
C30 0.2305 (7) 0.1283 (5) 0.5324 (2) 0.096 (3)
H30A 0.1531 0.1078 0.5019 0.144*
H30B 0.2055 0.0810 0.5811 0.144*
H30C 0.3400 0.1112 0.5140 0.144*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.05436 (16) 0.04869 (16) 0.03648 (13) 0.00370 (12) −0.00277 (11) −0.00905 (11)
Hg2 0.05948 (17) 0.04426 (16) 0.04687 (14) 0.01347 (12) −0.00141 (12) −0.01299 (11)
S3 0.0617 (11) 0.0717 (13) 0.0550 (9) 0.0052 (9) −0.0130 (9) −0.0248 (9)
S4 0.0627 (12) 0.0703 (13) 0.0932 (12) 0.0275 (9) −0.0289 (10) −0.0448 (11)
S1 0.0765 (13) 0.0860 (14) 0.0467 (9) −0.0330 (11) −0.0061 (9) −0.0024 (9)
S2 0.0691 (12) 0.0768 (14) 0.0767 (12) −0.0223 (10) −0.0121 (10) −0.0277 (10)
N5 0.046 (3) 0.040 (3) 0.036 (2) 0.006 (2) −0.005 (2) −0.009 (2)
N6 0.055 (3) 0.051 (3) 0.029 (2) 0.001 (3) −0.006 (2) −0.009 (2)
N2 0.026 (2) 0.032 (3) 0.040 (2) 0.0019 (19) 0.0036 (19) −0.014 (2)
N1 0.024 (2) 0.025 (2) 0.042 (2) 0.0009 (19) −0.001 (2) −0.005 (2)
C11 0.022 (3) 0.028 (3) 0.037 (3) −0.004 (2) 0.006 (2) −0.010 (2)
C28 0.040 (3) 0.056 (4) 0.040 (3) 0.009 (3) −0.017 (3) −0.017 (3)
C10 0.034 (3) 0.039 (3) 0.054 (3) 0.002 (3) −0.003 (3) −0.023 (3)
C12 0.024 (3) 0.031 (3) 0.037 (3) −0.002 (2) 0.000 (2) −0.012 (2)
C7 0.029 (3) 0.038 (3) 0.041 (3) −0.004 (2) −0.003 (3) −0.005 (3)
C27 0.045 (4) 0.040 (4) 0.041 (3) 0.008 (3) −0.012 (3) −0.010 (3)
N4 0.059 (4) 0.055 (4) 0.085 (4) 0.006 (3) 0.010 (4) −0.006 (3)
C17 0.050 (4) 0.052 (4) 0.050 (3) −0.002 (3) −0.002 (3) −0.007 (3)
C1 0.020 (3) 0.034 (3) 0.057 (3) −0.003 (2) 0.003 (3) −0.003 (3)
C16 0.031 (3) 0.039 (4) 0.081 (4) 0.008 (3) 0.005 (3) −0.022 (4)
C4 0.026 (3) 0.045 (4) 0.045 (3) −0.010 (3) 0.008 (2) −0.022 (3)
C3 0.032 (3) 0.044 (4) 0.061 (4) −0.007 (3) 0.010 (3) −0.030 (3)
C23 0.052 (4) 0.072 (5) 0.042 (3) 0.010 (3) −0.010 (3) −0.028 (3)
C2 0.031 (3) 0.041 (4) 0.078 (4) 0.008 (3) 0.009 (3) −0.030 (3)
C8 0.042 (4) 0.045 (4) 0.054 (3) 0.002 (3) −0.014 (3) 0.000 (3)
C6 0.041 (4) 0.067 (5) 0.029 (3) −0.010 (3) −0.003 (3) −0.005 (3)
C5 0.037 (3) 0.067 (5) 0.038 (3) −0.013 (3) 0.007 (3) −0.024 (3)
C9 0.041 (4) 0.039 (4) 0.070 (4) 0.009 (3) −0.013 (3) −0.015 (3)
C19 0.080 (5) 0.040 (4) 0.077 (5) 0.000 (4) −0.028 (4) −0.012 (4)
C15 0.065 (4) 0.049 (4) 0.047 (3) 0.000 (3) 0.012 (3) −0.006 (3)
C14 0.057 (4) 0.052 (4) 0.069 (4) 0.020 (3) −0.005 (3) −0.029 (3)
C20 0.049 (4) 0.047 (4) 0.057 (4) 0.008 (3) −0.020 (3) −0.018 (3)
N8 0.095 (5) 0.076 (5) 0.081 (4) 0.003 (4) 0.010 (4) −0.041 (4)
C18 0.074 (5) 0.047 (4) 0.057 (4) −0.008 (4) −0.013 (4) 0.004 (3)
C31 0.057 (4) 0.098 (6) 0.036 (3) 0.025 (4) −0.016 (3) −0.021 (4)
C13 0.041 (4) 0.044 (4) 0.073 (4) 0.009 (3) −0.008 (3) −0.007 (3)
C32 0.060 (4) 0.044 (4) 0.060 (4) 0.012 (3) 0.012 (3) −0.011 (3)
C26 0.064 (4) 0.068 (5) 0.038 (3) −0.006 (4) −0.006 (3) −0.005 (3)
N3 0.108 (5) 0.088 (5) 0.057 (3) −0.006 (4) −0.021 (4) −0.013 (3)
N7 0.113 (6) 0.076 (5) 0.062 (4) 0.042 (4) −0.023 (4) −0.009 (4)
C29 0.090 (6) 0.070 (5) 0.055 (4) −0.005 (4) 0.021 (4) −0.007 (4)
C22 0.073 (5) 0.088 (6) 0.069 (4) 0.022 (4) −0.016 (4) −0.051 (4)
C21 0.079 (5) 0.062 (5) 0.079 (5) 0.016 (4) −0.026 (4) −0.043 (4)
C25 0.083 (5) 0.094 (6) 0.033 (3) −0.009 (5) 0.004 (3) −0.007 (4)
C24 0.070 (5) 0.099 (6) 0.042 (4) 0.004 (4) 0.002 (3) −0.029 (4)
C30 0.154 (9) 0.067 (6) 0.053 (4) −0.017 (6) 0.011 (5) 0.004 (4)

Geometric parameters (Å, º)

Hg1—N1 2.396 (4) C3—H3A 0.9300
Hg1—N2 2.395 (4) C23—C24 1.395 (7)
Hg1—S1 2.4201 (16) C23—C22 1.436 (9)
Hg1—S2 2.4488 (16) C2—H2A 0.9300
Hg2—N5 2.384 (4) C8—C9 1.359 (7)
Hg2—N6 2.362 (4) C8—H8A 0.9300
Hg2—S3 2.4741 (16) C6—C5 1.348 (8)
Hg2—S4 2.4013 (18) C6—H6A 0.9300
S3—C31 1.658 (8) C5—H5A 0.9300
S4—C32 1.666 (7) C9—H9A 0.9300
S1—C15 1.644 (7) C19—C18 1.371 (9)
S2—C16 1.666 (7) C19—C20 1.390 (8)
N5—C17 1.327 (7) C19—H19A 0.9300
N5—C27 1.357 (6) C15—N3 1.156 (7)
N6—C26 1.332 (7) C14—H14A 0.9600
N6—C28 1.361 (7) C14—H14B 0.9600
N2—C10 1.324 (7) C14—H14C 0.9600
N2—C12 1.360 (6) C20—C21 1.426 (8)
N1—C1 1.330 (7) N8—C32 1.140 (7)
N1—C11 1.374 (6) C18—H18A 0.9300
C11—C4 1.413 (6) C31—N7 1.164 (8)
C11—C12 1.436 (7) C13—H13A 0.9600
C28—C23 1.392 (8) C13—H13B 0.9600
C28—C27 1.455 (7) C13—H13C 0.9600
C10—C9 1.400 (7) C26—C25 1.415 (9)
C10—C14 1.514 (7) C26—C30 1.504 (8)
C12—C7 1.418 (6) C29—H29A 0.9600
C7—C8 1.395 (8) C29—H29B 0.9600
C7—C6 1.430 (7) C29—H29C 0.9600
C27—C20 1.400 (7) C22—C21 1.333 (9)
N4—C16 1.154 (7) C22—H22A 0.9300
C17—C18 1.394 (8) C21—H21A 0.9300
C17—C29 1.504 (8) C25—C24 1.339 (8)
C1—C2 1.401 (7) C25—H25A 0.9300
C1—C13 1.493 (7) C24—H24A 0.9300
C4—C3 1.397 (8) C30—H30A 0.9600
C4—C5 1.421 (7) C30—H30B 0.9600
C3—C2 1.366 (7) C30—H30C 0.9600
N2—Hg1—N1 70.31 (13) C1—C2—H2A 120.0
N2—Hg1—S1 115.08 (10) C9—C8—C7 121.1 (5)
N1—Hg1—S1 105.19 (10) C9—C8—H8A 119.4
N2—Hg1—S2 95.17 (10) C7—C8—H8A 119.4
N1—Hg1—S2 107.09 (10) C5—C6—C7 121.3 (5)
S1—Hg1—S2 141.59 (6) C5—C6—H6A 119.4
N6—Hg2—N5 71.23 (15) C7—C6—H6A 119.4
N6—Hg2—S4 122.12 (12) C6—C5—C4 121.2 (5)
N5—Hg2—S4 114.77 (12) C6—C5—H5A 119.4
N6—Hg2—S3 98.11 (12) C4—C5—H5A 119.4
N5—Hg2—S3 100.38 (11) C8—C9—C10 118.9 (6)
S4—Hg2—S3 132.60 (6) C8—C9—H9A 120.6
C31—S3—Hg2 98.6 (2) C10—C9—H9A 120.6
C32—S4—Hg2 101.1 (2) C18—C19—C20 120.5 (6)
C15—S1—Hg1 101.9 (2) C18—C19—H19A 119.8
C16—S2—Hg1 100.0 (2) C20—C19—H19A 119.8
C17—N5—C27 119.7 (5) N3—C15—S1 176.3 (6)
C17—N5—Hg2 125.3 (4) C10—C14—H14A 109.5
C27—N5—Hg2 114.4 (3) C10—C14—H14B 109.5
C26—N6—C28 119.2 (5) H14A—C14—H14B 109.5
C26—N6—Hg2 124.8 (4) C10—C14—H14C 109.5
C28—N6—Hg2 115.3 (4) H14A—C14—H14C 109.5
C10—N2—C12 120.1 (4) H14B—C14—H14C 109.5
C10—N2—Hg1 124.5 (3) C19—C20—C27 117.0 (6)
C12—N2—Hg1 113.5 (3) C19—C20—C21 123.0 (6)
C1—N1—C11 118.9 (4) C27—C20—C21 120.0 (6)
C1—N1—Hg1 126.2 (3) C19—C18—C17 119.4 (6)
C11—N1—Hg1 114.1 (3) C19—C18—H18A 120.3
N1—C11—C4 122.1 (5) C17—C18—H18A 120.3
N1—C11—C12 118.1 (4) N7—C31—S3 178.0 (7)
C4—C11—C12 119.8 (5) C1—C13—H13A 109.5
N6—C28—C23 122.1 (6) C1—C13—H13B 109.5
N6—C28—C27 118.4 (5) H13A—C13—H13B 109.5
C23—C28—C27 119.4 (6) C1—C13—H13C 109.5
N2—C10—C9 121.8 (5) H13A—C13—H13C 109.5
N2—C10—C14 117.6 (5) H13B—C13—H13C 109.5
C9—C10—C14 120.6 (5) N8—C32—S4 177.9 (7)
N2—C12—C7 121.1 (5) N6—C26—C25 120.7 (6)
N2—C12—C11 119.8 (4) N6—C26—C30 118.9 (5)
C7—C12—C11 119.0 (4) C25—C26—C30 120.4 (6)
C8—C7—C12 117.0 (5) C17—C29—H29A 109.5
C8—C7—C6 123.7 (5) C17—C29—H29B 109.5
C12—C7—C6 119.3 (5) H29A—C29—H29B 109.5
N5—C27—C20 122.2 (5) C17—C29—H29C 109.5
N5—C27—C28 119.1 (5) H29A—C29—H29C 109.5
C20—C27—C28 118.7 (5) H29B—C29—H29C 109.5
N5—C17—C18 121.1 (6) C21—C22—C23 120.9 (6)
N5—C17—C29 117.4 (6) C21—C22—H22A 119.5
C18—C17—C29 121.5 (6) C23—C22—H22A 119.5
N1—C1—C2 121.7 (5) C22—C21—C20 121.2 (6)
N1—C1—C13 118.0 (5) C22—C21—H21A 119.4
C2—C1—C13 120.4 (5) C20—C21—H21A 119.4
N4—C16—S2 179.5 (6) C24—C25—C26 120.1 (6)
C3—C4—C11 117.1 (5) C24—C25—H25A 119.9
C3—C4—C5 123.5 (5) C26—C25—H25A 119.9
C11—C4—C5 119.4 (5) C25—C24—C23 120.1 (5)
C2—C3—C4 120.2 (5) C25—C24—H24A 119.9
C2—C3—H3A 119.9 C23—C24—H24A 119.9
C4—C3—H3A 119.9 C26—C30—H30A 109.5
C28—C23—C24 117.7 (6) C26—C30—H30B 109.5
C28—C23—C22 119.7 (6) H30A—C30—H30B 109.5
C24—C23—C22 122.5 (6) C26—C30—H30C 109.5
C3—C2—C1 120.0 (5) H30A—C30—H30C 109.5
C3—C2—H2A 120.0 H30B—C30—H30C 109.5
N6—Hg2—S3—C31 85.6 (3) Hg2—N5—C27—C28 8.4 (6)
N5—Hg2—S3—C31 13.3 (2) N6—C28—C27—N5 0.9 (7)
S4—Hg2—S3—C31 −125.1 (2) C23—C28—C27—N5 −179.0 (5)
N6—Hg2—S4—C32 143.6 (3) N6—C28—C27—C20 −179.9 (5)
N5—Hg2—S4—C32 −133.8 (2) C23—C28—C27—C20 0.2 (8)
S3—Hg2—S4—C32 0.2 (3) C27—N5—C17—C18 −0.9 (8)
N2—Hg1—S1—C15 −152.7 (3) Hg2—N5—C17—C18 170.2 (4)
N1—Hg1—S1—C15 132.3 (3) C27—N5—C17—C29 −179.0 (5)
S2—Hg1—S1—C15 −14.0 (3) Hg2—N5—C17—C29 −8.0 (7)
N2—Hg1—S2—C16 −31.0 (2) C11—N1—C1—C2 1.5 (7)
N1—Hg1—S2—C16 40.0 (2) Hg1—N1—C1—C2 −167.2 (3)
S1—Hg1—S2—C16 −174.1 (2) C11—N1—C1—C13 −178.0 (4)
N6—Hg2—N5—C17 179.0 (5) Hg1—N1—C1—C13 13.4 (6)
S4—Hg2—N5—C17 61.5 (5) Hg1—S2—C16—N4 −115 (83)
S3—Hg2—N5—C17 −85.9 (4) N1—C11—C4—C3 2.0 (7)
N6—Hg2—N5—C27 −9.6 (3) C12—C11—C4—C3 −176.3 (4)
S4—Hg2—N5—C27 −127.1 (3) N1—C11—C4—C5 −178.6 (4)
S3—Hg2—N5—C27 85.5 (4) C12—C11—C4—C5 3.1 (7)
N5—Hg2—N6—C26 −179.7 (5) C11—C4—C3—C2 −0.5 (7)
S4—Hg2—N6—C26 −71.7 (5) C5—C4—C3—C2 −179.8 (5)
S3—Hg2—N6—C26 82.0 (5) N6—C28—C23—C24 0.3 (8)
N5—Hg2—N6—C28 10.1 (3) C27—C28—C23—C24 −179.8 (5)
S4—Hg2—N6—C28 118.1 (4) N6—C28—C23—C22 −179.1 (5)
S3—Hg2—N6—C28 −88.1 (4) C27—C28—C23—C22 0.8 (8)
N1—Hg1—N2—C10 178.6 (4) C4—C3—C2—C1 −0.5 (8)
S1—Hg1—N2—C10 80.6 (4) N1—C1—C2—C3 0.0 (8)
S2—Hg1—N2—C10 −75.1 (4) C13—C1—C2—C3 179.5 (5)
N1—Hg1—N2—C12 −17.2 (3) C12—C7—C8—C9 −0.3 (7)
S1—Hg1—N2—C12 −115.2 (3) C6—C7—C8—C9 178.0 (5)
S2—Hg1—N2—C12 89.1 (3) C8—C7—C6—C5 −176.6 (5)
N2—Hg1—N1—C1 −174.6 (4) C12—C7—C6—C5 1.7 (8)
S1—Hg1—N1—C1 −62.9 (4) C7—C6—C5—C4 −0.5 (8)
S2—Hg1—N1—C1 96.0 (4) C3—C4—C5—C6 177.5 (5)
N2—Hg1—N1—C11 16.3 (3) C11—C4—C5—C6 −1.9 (8)
S1—Hg1—N1—C11 128.0 (3) C7—C8—C9—C10 0.9 (8)
S2—Hg1—N1—C11 −73.1 (3) N2—C10—C9—C8 −0.9 (8)
C1—N1—C11—C4 −2.5 (6) C14—C10—C9—C8 179.8 (5)
Hg1—N1—C11—C4 167.4 (3) Hg1—S1—C15—N3 −175 (11)
C1—N1—C11—C12 175.8 (4) C18—C19—C20—C27 −1.0 (9)
Hg1—N1—C11—C12 −14.2 (5) C18—C19—C20—C21 179.9 (6)
C26—N6—C28—C23 −0.7 (8) N5—C27—C20—C19 −0.3 (8)
Hg2—N6—C28—C23 170.0 (4) C28—C27—C20—C19 −179.4 (5)
C26—N6—C28—C27 179.4 (5) N5—C27—C20—C21 178.9 (5)
Hg2—N6—C28—C27 −9.9 (6) C28—C27—C20—C21 −0.3 (8)
C12—N2—C10—C9 0.3 (7) C20—C19—C18—C17 1.3 (10)
Hg1—N2—C10—C9 163.5 (4) N5—C17—C18—C19 −0.4 (9)
C12—N2—C10—C14 179.6 (4) C29—C17—C18—C19 177.7 (6)
Hg1—N2—C10—C14 −17.2 (6) Hg2—S3—C31—N7 −141 (17)
C10—N2—C12—C7 0.3 (7) Hg2—S4—C32—N8 −172 (17)
Hg1—N2—C12—C7 −164.7 (3) C28—N6—C26—C25 0.9 (9)
C10—N2—C12—C11 −177.9 (4) Hg2—N6—C26—C25 −168.9 (5)
Hg1—N2—C12—C11 17.1 (5) C28—N6—C26—C30 −177.9 (5)
N1—C11—C12—N2 −2.1 (6) Hg2—N6—C26—C30 12.3 (7)
C4—C11—C12—N2 176.3 (4) C28—C23—C22—C21 −1.8 (10)
N1—C11—C12—C7 179.7 (4) C24—C23—C22—C21 178.8 (6)
C4—C11—C12—C7 −1.9 (7) C23—C22—C21—C20 1.7 (10)
N2—C12—C7—C8 −0.3 (7) C19—C20—C21—C22 178.4 (6)
C11—C12—C7—C8 178.0 (4) C27—C20—C21—C22 −0.7 (10)
N2—C12—C7—C6 −178.7 (4) N6—C26—C25—C24 −0.8 (10)
C11—C12—C7—C6 −0.4 (7) C30—C26—C25—C24 178.0 (7)
C17—N5—C27—C20 1.2 (8) C26—C25—C24—C23 0.4 (10)
Hg2—N5—C27—C20 −170.8 (4) C28—C23—C24—C25 −0.2 (9)
C17—N5—C27—C28 −179.6 (5) C22—C23—C24—C25 179.3 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2049).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. [DOI] [PMC free article] [PubMed]
  3. Bodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. & Borras, J. (2009). Polyhedron, 28, 2537–2544.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Lange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342–3349. [DOI] [PubMed]
  6. Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. [DOI] [PMC free article] [PubMed]
  9. Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038160/vn2049sup1.cif

e-68-m1259-sup1.cif (37.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038160/vn2049Isup2.hkl

e-68-m1259-Isup2.hkl (293KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES