Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 15;68(Pt 10):m1272–m1273. doi: 10.1107/S1600536812038573

Bis[4-amino-3,5-bis­(pyridin-2-yl)-4H-1,2,4-triazole-κ2 N 1,N 5]diaqua­cobalt(II) bis­(perchlorate)

Mi Feng a, Yu-Fei Ji a, Sheng-Li Liang a, Zhi-Liang Liu a,*
PMCID: PMC3470152  PMID: 23125596

Abstract

In the title structure, [Co(C12H10N6)2(H2O)2](ClO4)2, the CoII atom lies on an inversion centre and is coordinated in a slightly distorted octa­hedral geometry by four N atoms from two 4-amino-3,5-bis­(pyridin-2-yl)-4H-1,2,4-triazole (adpt) ligands in equatorial positions and two O atoms from two water mol­ecules in axial positions. An intra­molecular N—H⋯N inter­action stabilizes the mol­ecular conformation. Inter­molecular N—H⋯O and O—H⋯O inter­actions involving the perchlorate counter-anions extend the monomeric compound into a two-dimensional network parallel to the bc plane.

Related literature  

For the synthesis of the adpt ligand, see: Geldard & Lions (1965). For background to the coordination chemistry of the adpt ligand, see: Meng et al. (2009). For intra­molecular hydrogen bonds in the adpt ligand, see: Kitchen et al. (2008). For other Co(II) coordination compounds with the same ligand, see: Keij et al. (1984); Peng et al. (2006); García-Couceiro et al. (2009); White et al. (2010).graphic file with name e-68-m1272-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C12H10N6)2(H2O)2](ClO4)2

  • M r = 770.38

  • Monoclinic, Inline graphic

  • a = 8.5839 (17) Å

  • b = 12.950 (3) Å

  • c = 14.975 (5) Å

  • β = 114.34 (2)°

  • V = 1516.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.04 × 0.03 × 0.01 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.971, T max = 0.992

  • 10155 measured reflections

  • 2681 independent reflections

  • 2336 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.121

  • S = 1.07

  • 2681 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038573/wm2664sup1.cif

e-68-m1272-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038573/wm2664Isup2.hkl

e-68-m1272-Isup2.hkl (131.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯N5 0.89 2.29 2.897 (4) 125
N6—H6B⋯O3i 0.89 2.39 2.989 (4) 124
O1—H1A⋯O4 0.85 2.16 2.782 (4) 130
O1—H1B⋯O2ii 0.85 2.22 2.983 (4) 150
O1—H1B⋯O5ii 0.85 2.58 3.284 (5) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the NSFC (21061009) and the National Students of Innovation and Entrepreneurship Training Programs (111012608) for their financial support.

supplementary crystallographic information

Comment

Recently, 4-amine-3,5-di-2-pyridyl-1,2,4-triazol (adpt) has been used as a potential multidentate ligand to generate novel metal-organic complexes due to containing five N coordination sites and three potentially conjugated aromatic rings (Meng et al., 2009). Such complexes with adpt have interesting properties for potential applications in the fields of magnetic materials (Keij et al., 1984). Several Co(II) compounds containing adpt have been reported previously (Keij et al., 1984; Peng et al., 2006; García-Couceiro et al., 2009; White et al., 2010). Herein, the synthesis and crystal structure of the title complex [Co(C12H10N6)2(H2O)2](ClO4)2, (I), is reported.

As shown in Figure 1, compound (I) consists of one Co(II) atom located on an inversion centre, two adpt ligands, two water molecules and two isolated perchlorate counter anions. The Co(II) is six-coordinated by four N atoms from two adpt ligands and two O atoms from two water molecules, giving a slightly distorted octahedral coordination environment. The equatorial plane is defined by four N atoms from two adpt ligands with a chelate formation, and the axial positions are occupied by two O atoms of water molecules. The dihedral angle between the non-coordinated pyridine ring and the coordinating pyridine ring is 11.94 (16) ° and that between the coordinating pyridine ring and the triazole ring is 6.76 (6)°. In the mononuclear unit, an intramolecular N—H···N hydrogen-bonding interaction between the NH2 group attached to the the triazole ring and the non-coordinating N atom of pyridine is observed (Kitchen et al., 2008). Intermolecular N—H···O and O—H···O hydrogen-bonding interactions exist between the amine group and the coordinating water molecules, respectively, with the O atoms of the isolated perchlorate counter anions. In the crystal, the molecular entities are linked by O—H···O hydrogen bonds generating chains along the b axis. These chains in turn aggregate into a two-dimensional network parallel to the bc plane (Fig. 2).

Experimental

4-Amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole (abpt, 5mmol) was dissolved in 20 ml mixture solution of water and methanol (1:1, v/v). Then Co(ClO4)2`4H2O (5 mmol) was added to the above solution. The resulting solution was stirred for 3 h at room temperature. Upon slow evaporation of the solvent, dark red block-shaped crystals formed from the filtrate in a few days. The used 4-amine-3,5-di-2-pyridyl-1,2,4-triazol (adpt) was synthesized according to the previously reported procedure (Geldard & Lions, 1965).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located in a difference map and refined with a fixed distance of O—H = 0.85 and N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(N,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. N—H···N and O—H···O interactions are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. O—H···O interactions are shown as dashed lines.

Crystal data

[Co(C12H10N6)2(H2O)2](ClO4)2 F(000) = 786
Mr = 770.38 Dx = 1.687 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3601 reflections
a = 8.5839 (17) Å θ = 2.2–27.9°
b = 12.950 (3) Å µ = 0.82 mm1
c = 14.975 (5) Å T = 293 K
β = 114.34 (2)° Block, dark red
V = 1516.7 (7) Å3 0.04 × 0.03 × 0.01 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer 2681 independent reflections
Radiation source: fine-focus sealed tube 2336 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→10
Tmin = 0.971, Tmax = 0.992 k = −15→15
10155 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 2.3812P] where P = (Fo2 + 2Fc2)/3
2681 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.5000 0.5000 0.5000 0.0181 (2)
Cl1 0.51836 (11) 0.31957 (6) 0.20373 (6) 0.0255 (2)
N1 0.2655 (3) 0.5819 (2) 0.46508 (18) 0.0182 (6)
N2 0.7370 (3) 0.6987 (2) 0.59168 (19) 0.0203 (6)
N3 0.5833 (3) 0.64755 (19) 0.55294 (19) 0.0188 (6)
N4 0.5287 (3) 0.80947 (19) 0.56599 (18) 0.0165 (6)
N5 0.7829 (4) 0.9719 (2) 0.6482 (2) 0.0247 (6)
N6 0.4322 (4) 0.9001 (2) 0.5607 (2) 0.0295 (7)
H6A 0.3984 0.9278 0.5012 0.044*
H6B 0.4971 0.9452 0.6054 0.044*
O1 0.5064 (3) 0.54303 (18) 0.36619 (16) 0.0287 (6)
H1A 0.5952 0.5177 0.3628 0.043*
H1B 0.5093 0.6085 0.3630 0.043*
O2 0.6254 (4) 0.2589 (3) 0.1740 (3) 0.0633 (10)
O3 0.4116 (4) 0.3823 (2) 0.1213 (2) 0.0555 (9)
O4 0.6210 (4) 0.3837 (2) 0.2840 (2) 0.0475 (8)
O5 0.4126 (4) 0.2533 (3) 0.2297 (2) 0.0687 (11)
C1 0.2804 (4) 0.6823 (2) 0.4928 (2) 0.0181 (7)
C2 0.1401 (4) 0.7437 (3) 0.4777 (2) 0.0229 (7)
H2 0.1537 0.8123 0.4977 0.027*
C3 −0.0217 (4) 0.7004 (3) 0.4318 (3) 0.0273 (8)
H3 −0.1184 0.7398 0.4211 0.033*
C4 −0.0381 (4) 0.5988 (3) 0.4024 (2) 0.0261 (8)
H4 −0.1457 0.5692 0.3704 0.031*
C5 0.1082 (4) 0.5415 (3) 0.4210 (2) 0.0228 (7)
H5 0.0969 0.4724 0.4023 0.027*
C6 0.4598 (4) 0.7148 (2) 0.5385 (2) 0.0171 (7)
C7 0.7014 (4) 0.7965 (2) 0.5981 (2) 0.0190 (7)
C8 0.8325 (4) 0.8777 (2) 0.6329 (2) 0.0205 (7)
C9 0.9991 (4) 0.8547 (3) 0.6470 (3) 0.0285 (8)
H9 1.0293 0.7879 0.6378 0.034*
C10 1.1191 (5) 0.9332 (3) 0.6750 (3) 0.0334 (9)
H10 1.2307 0.9207 0.6828 0.040*
C11 1.0696 (5) 1.0310 (3) 0.6914 (3) 0.0313 (8)
H11 1.1477 1.0851 0.7107 0.038*
C12 0.9036 (5) 1.0464 (3) 0.6786 (3) 0.0287 (8)
H12 0.8726 1.1116 0.6915 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0183 (3) 0.0139 (3) 0.0231 (3) −0.0002 (2) 0.0096 (3) −0.0014 (2)
Cl1 0.0309 (5) 0.0211 (4) 0.0282 (5) −0.0011 (3) 0.0160 (4) −0.0031 (3)
N1 0.0186 (14) 0.0168 (14) 0.0212 (13) −0.0010 (11) 0.0103 (11) 0.0001 (11)
N2 0.0157 (14) 0.0183 (14) 0.0245 (14) −0.0012 (11) 0.0058 (12) −0.0021 (11)
N3 0.0174 (14) 0.0143 (13) 0.0244 (14) 0.0001 (11) 0.0083 (12) −0.0013 (11)
N4 0.0191 (14) 0.0131 (13) 0.0185 (13) 0.0010 (10) 0.0091 (11) −0.0003 (10)
N5 0.0233 (15) 0.0187 (14) 0.0297 (16) −0.0012 (12) 0.0086 (13) −0.0012 (12)
N6 0.0262 (16) 0.0185 (15) 0.0424 (18) 0.0023 (12) 0.0128 (14) −0.0011 (13)
O1 0.0389 (15) 0.0206 (12) 0.0312 (13) 0.0066 (11) 0.0191 (12) 0.0034 (10)
O2 0.0474 (19) 0.070 (2) 0.073 (2) 0.0008 (17) 0.0256 (17) −0.0440 (19)
O3 0.062 (2) 0.0395 (18) 0.0509 (18) 0.0045 (16) 0.0092 (16) 0.0161 (14)
O4 0.0537 (19) 0.0519 (18) 0.0393 (16) −0.0126 (15) 0.0217 (14) −0.0229 (14)
O5 0.060 (2) 0.096 (3) 0.0425 (18) −0.046 (2) 0.0130 (16) 0.0131 (18)
C1 0.0217 (17) 0.0179 (16) 0.0181 (16) −0.0007 (13) 0.0116 (14) 0.0017 (12)
C2 0.0237 (18) 0.0196 (17) 0.0283 (18) 0.0016 (14) 0.0138 (15) −0.0002 (14)
C3 0.0205 (18) 0.0293 (19) 0.035 (2) 0.0053 (15) 0.0145 (16) 0.0059 (15)
C4 0.0165 (17) 0.032 (2) 0.0295 (18) −0.0049 (15) 0.0090 (15) −0.0010 (15)
C5 0.0240 (18) 0.0206 (17) 0.0268 (17) −0.0019 (14) 0.0134 (15) −0.0012 (14)
C6 0.0212 (17) 0.0156 (16) 0.0175 (15) −0.0007 (13) 0.0109 (13) 0.0007 (12)
C7 0.0218 (17) 0.0181 (16) 0.0193 (16) −0.0002 (13) 0.0107 (14) 0.0002 (13)
C8 0.0214 (17) 0.0196 (17) 0.0198 (16) −0.0013 (13) 0.0077 (14) −0.0007 (13)
C9 0.0248 (19) 0.0256 (19) 0.0339 (19) −0.0015 (15) 0.0111 (16) −0.0073 (15)
C10 0.0230 (19) 0.039 (2) 0.038 (2) −0.0043 (16) 0.0120 (17) −0.0086 (17)
C11 0.028 (2) 0.029 (2) 0.031 (2) −0.0115 (16) 0.0065 (16) −0.0048 (16)
C12 0.029 (2) 0.0191 (18) 0.0338 (19) −0.0032 (15) 0.0089 (16) −0.0063 (15)

Geometric parameters (Å, º)

Co1—N3 2.079 (3) N6—H6B 0.8901
Co1—N3i 2.079 (3) O1—H1A 0.8500
Co1—O1i 2.102 (2) O1—H1B 0.8500
Co1—O1 2.102 (2) C1—C2 1.381 (4)
Co1—N1 2.141 (3) C1—C6 1.466 (4)
Co1—N1i 2.141 (3) C2—C3 1.389 (5)
Cl1—O2 1.413 (3) C2—H2 0.9300
Cl1—O5 1.416 (3) C3—C4 1.376 (5)
Cl1—O4 1.428 (3) C3—H3 0.9300
Cl1—O3 1.446 (3) C4—C5 1.385 (5)
N1—C5 1.341 (4) C4—H4 0.9300
N1—C1 1.355 (4) C5—H5 0.9300
N2—C7 1.316 (4) C7—C8 1.470 (4)
N2—N3 1.372 (4) C8—C9 1.389 (5)
N3—C6 1.319 (4) C9—C10 1.384 (5)
N4—C6 1.350 (4) C9—H9 0.9300
N4—C7 1.367 (4) C10—C11 1.390 (5)
N4—N6 1.420 (4) C10—H10 0.9300
N5—C8 1.342 (4) C11—C12 1.372 (5)
N5—C12 1.350 (5) C11—H11 0.9300
N6—H6A 0.8901 C12—H12 0.9300
N3—Co1—N3i 180.0 H1A—O1—H1B 109.5
N3—Co1—O1i 91.15 (10) N1—C1—C2 122.4 (3)
N3i—Co1—O1i 88.85 (10) N1—C1—C6 111.5 (3)
N3—Co1—O1 88.85 (10) C2—C1—C6 126.1 (3)
N3i—Co1—O1 91.15 (10) C1—C2—C3 118.4 (3)
O1i—Co1—O1 180.000 (1) C1—C2—H2 120.8
N3—Co1—N1 77.24 (10) C3—C2—H2 120.8
N3i—Co1—N1 102.76 (10) C4—C3—C2 119.6 (3)
O1i—Co1—N1 88.45 (9) C4—C3—H3 120.2
O1—Co1—N1 91.55 (9) C2—C3—H3 120.2
N3—Co1—N1i 102.76 (10) C3—C4—C5 119.0 (3)
N3i—Co1—N1i 77.24 (10) C3—C4—H4 120.5
O1i—Co1—N1i 91.55 (9) C5—C4—H4 120.5
O1—Co1—N1i 88.45 (9) N1—C5—C4 122.3 (3)
N1—Co1—N1i 180.000 (1) N1—C5—H5 118.8
O2—Cl1—O5 108.9 (3) C4—C5—H5 118.8
O2—Cl1—O4 109.47 (19) N3—C6—N4 109.2 (3)
O5—Cl1—O4 111.4 (2) N3—C6—C1 120.4 (3)
O2—Cl1—O3 108.0 (2) N4—C6—C1 130.3 (3)
O5—Cl1—O3 108.8 (2) N2—C7—N4 110.1 (3)
O4—Cl1—O3 110.2 (2) N2—C7—C8 123.2 (3)
C5—N1—C1 118.3 (3) N4—C7—C8 126.7 (3)
C5—N1—Co1 125.6 (2) N5—C8—C9 123.3 (3)
C1—N1—Co1 116.1 (2) N5—C8—C7 117.4 (3)
C7—N2—N3 106.5 (3) C9—C8—C7 119.3 (3)
C6—N3—N2 108.6 (2) C10—C9—C8 118.7 (3)
C6—N3—Co1 114.6 (2) C10—C9—H9 120.7
N2—N3—Co1 136.4 (2) C8—C9—H9 120.7
C6—N4—C7 105.7 (3) C9—C10—C11 118.7 (3)
C6—N4—N6 124.2 (3) C9—C10—H10 120.7
C7—N4—N6 130.1 (3) C11—C10—H10 120.7
C8—N5—C12 117.0 (3) C12—C11—C10 118.9 (3)
N4—N6—H6A 109.3 C12—C11—H11 120.6
N4—N6—H6B 109.2 C10—C11—H11 120.6
H6A—N6—H6B 109.5 N5—C12—C11 123.5 (3)
Co1—O1—H1A 109.3 N5—C12—H12 118.2
Co1—O1—H1B 109.3 C11—C12—H12 118.2
N3—Co1—N1—C5 −179.1 (3) Co1—N3—C6—N4 −173.37 (18)
N3i—Co1—N1—C5 0.9 (3) N2—N3—C6—C1 176.9 (3)
O1i—Co1—N1—C5 −87.5 (3) Co1—N3—C6—C1 3.0 (4)
O1—Co1—N1—C5 92.5 (3) C7—N4—C6—N3 0.0 (3)
N3—Co1—N1—C1 −0.9 (2) N6—N4—C6—N3 −179.7 (3)
N3i—Co1—N1—C1 179.1 (2) C7—N4—C6—C1 −175.8 (3)
O1i—Co1—N1—C1 90.7 (2) N6—N4—C6—C1 4.4 (5)
O1—Co1—N1—C1 −89.3 (2) N1—C1—C6—N3 −3.6 (4)
C7—N2—N3—C6 −1.0 (3) C2—C1—C6—N3 176.9 (3)
C7—N2—N3—Co1 171.1 (2) N1—C1—C6—N4 171.8 (3)
O1i—Co1—N3—C6 −89.3 (2) C2—C1—C6—N4 −7.7 (5)
O1—Co1—N3—C6 90.7 (2) N3—N2—C7—N4 1.0 (3)
N1—Co1—N3—C6 −1.1 (2) N3—N2—C7—C8 −177.6 (3)
N1i—Co1—N3—C6 178.9 (2) C6—N4—C7—N2 −0.6 (3)
O1i—Co1—N3—N2 99.0 (3) N6—N4—C7—N2 179.1 (3)
O1—Co1—N3—N2 −81.0 (3) C6—N4—C7—C8 177.8 (3)
N1—Co1—N3—N2 −172.8 (3) N6—N4—C7—C8 −2.4 (5)
N1i—Co1—N3—N2 7.2 (3) C12—N5—C8—C9 0.2 (5)
C5—N1—C1—C2 0.3 (4) C12—N5—C8—C7 −178.9 (3)
Co1—N1—C1—C2 −178.0 (2) N2—C7—C8—N5 −171.5 (3)
C5—N1—C1—C6 −179.2 (3) N4—C7—C8—N5 10.2 (5)
Co1—N1—C1—C6 2.5 (3) N2—C7—C8—C9 9.4 (5)
N1—C1—C2—C3 −0.4 (5) N4—C7—C8—C9 −169.0 (3)
C6—C1—C2—C3 179.1 (3) N5—C8—C9—C10 −2.3 (5)
C1—C2—C3—C4 −0.4 (5) C7—C8—C9—C10 176.8 (3)
C2—C3—C4—C5 1.3 (5) C8—C9—C10—C11 2.3 (5)
C1—N1—C5—C4 0.6 (5) C9—C10—C11—C12 −0.4 (5)
Co1—N1—C5—C4 178.8 (2) C8—N5—C12—C11 1.9 (5)
C3—C4—C5—N1 −1.4 (5) C10—C11—C12—N5 −1.8 (6)
N2—N3—C6—N4 0.6 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6B···N5 0.89 2.29 2.897 (4) 125
N6—H6B···O3ii 0.89 2.39 2.989 (4) 124
O1—H1A···O4 0.85 2.16 2.782 (4) 130
O1—H1B···O2iii 0.85 2.22 2.983 (4) 150
O1—H1B···O5iii 0.85 2.58 3.284 (5) 141

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2664).

References

  1. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. García-Couceiro, U., Castillo, O., Cepeda, J., Luque, A., Pérez-Yanez, S. & Román, P. (2009). Inorg. Chim. Acta, 362, 4212–4218.
  4. Geldard, J. F. & Lions, F. (1965). J. Org. Chem. 30, 318–319.
  5. Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.
  6. Kitchen, J. A., Noble, A., Brandt, C. D., Moubaraki, B., Murray, K. S. & Brooker, S. (2008). Inorg. Chem. 47, 9450–9458. [DOI] [PubMed]
  7. Meng, Z.-S., Yun, L., Zhang, W.-X., Hong, C.-G., Herchel, R., Ou, Y.-C., Leng, J.-D., Peng, M.-X., Lin, Z.-J. & Tong, M.-L. (2009). Dalton Trans. pp. 10284–10295. [DOI] [PubMed]
  8. Peng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703–707.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. White, N. G., Feltham, H. L. C., Gandolfi, C., Albrecht, M. & Brooker, S. (2010). Dalton Trans. 39, 3751–3758. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038573/wm2664sup1.cif

e-68-m1272-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038573/wm2664Isup2.hkl

e-68-m1272-Isup2.hkl (131.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES