Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 19;68(Pt 10):m1282–m1283. doi: 10.1107/S1600536812039207

{2,6-Bis[(2,6-diisopropyl­phosphan­yl)­oxy]-4-fluoro­phenyl-κ3 P,C 1,P′}(1H-pyrazole-κN 2)nickel(II) hexa­fluoro­phosphate

Man-Lung Kwan a, Sara J Conry a, Charles S Carfagna a, Loren P Press b, Oleg V Ozerov b, Norris W Hoffman c, Richard E Sykora c,*
PMCID: PMC3470159  PMID: 23125603

Abstract

The title compound, [Ni(C18H30FO2P2)(C3H4N2)]PF6, was prepared by halide abstraction with TlPF6 in the presence of CH3CN in CDCl3 from the respective neutral pincer chlorido analogue followed by addition of pyrazole. The PO—C—OP pincer ligand acts in typical trans-P2 tridentate fashion to generate a distorted square-planar nickel structure. The Ni—N(pyrazole) distance is 1.925 (2) Å and the plane of the pyrazole ligand is rotated 56.2 (1)° relative to the approximate square plane surrounding the NiII center in which the pyrazole is bound to the NiII atom through its sp 2-hybridized N atom. This Ni—N distance is similar to bond lengths in the other reported NiII pincer-ligand square-planar pyrazole complex structures; however, its dihedral angle is significantly larger than any of those for the latter set of pyrazole complexes.

Related literature  

For recent studies on the chemistry of d-block PO—C—OP pincer complexes, see Chen et al. (2012); Zhang et al. (2012); Salah & Zargarian (2011); Hoffman et al. (2009); Wicker et al. (2011). For structures of other NiII pincer-ligand square-planar pyrazole complexes, see Salem et al. (2007, 2008); Peng et al. (2010). For information regarding the 19F NMR reference, see: Ji et al. (2005).graphic file with name e-68-m1282-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C18H30FO2P2)(C3H4N2)]PF6

  • M r = 631.12

  • Monoclinic, Inline graphic

  • a = 9.0380 (9) Å

  • b = 20.1878 (16) Å

  • c = 16.1480 (16) Å

  • β = 98.659 (8)°

  • V = 2912.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 290 K

  • 0.58 × 0.52 × 0.34 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.265, T max = 0.315

  • 5464 measured reflections

  • 5122 independent reflections

  • 3432 reflections with I > 2σ(I)

  • R int = 0.024

  • 3 standard reflections every 120 min intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.00

  • 5122 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4-PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039207/hg5249sup1.cif

e-68-m1282-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039207/hg5249Isup2.hkl

e-68-m1282-Isup2.hkl (250.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at the University of South Alabama for their generous support and the Department of Energy and Oak Ridge National Laboratory for the X-ray diffractometer used in these studies. They also appreciate support from the National Science Foundation: grant #CHE-99–09502, REU Supplement with Alan Marshall of Florida State University/National High Magnetic Field Laboratory, Tallahassee, FL, USA and grant CHE-0846680, NSF CAREER grant to RES.

supplementary crystallographic information

Comment

Considerable attention has recently been devoted to nickel PO—C—OP pincer complexes (e.g., Salah & Zargarian, 2011; Chen et al., 2012; Zhang et al., 2012). Our interest in studying relative binding affinities of metal centers for ligands of moderate donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009) to monitor ligand-substitution equilibria led us to prepare the title complex (I). The fluoro-pincer ligand precursor was generated by heating 5-fluororesorcinol and diisopropylchlorophosphine in THF in the presence of triethylamine, and then anhydrous NiCl2 was added to form the (PO—C—OP)NiCl complex. Chloride abstraction with TlPF6 in the presence of CH3CN from this species followed by addition of pyrazole afforded an excellent yield of the cationic complex whose structure is shown below in Fig 1. Suitable single crystals were grown via vapor diffusion of methyl tert-butyl ether into a CDCl3 solution of the highly soluble reaction product at room temperature. Its Ni—N distance, 1.925 (2) Å, fell within the range of such values for the five square-planar NiII-pincer unsubstituted-pyrazole complexes found in the Cambridge Structural Database (Salem et al. (2008), Peng et al. (2010), and Salem et al. (2007)). However, its pyrazole-ring/Ni-coordination-plane dihedral angle, 56.2 (1)°, falls significantly outside the range (3–28°) of those for the latter set of pyrazole complexes, in which none of the pendant-ligand arms exert meaningful steric force upon the pyrazole position. The C—F bond length for this complex, 1.355 (4) Å, is identical within experimental error to that, 1.357 (3) Å, of Pd{(3–2,6-[(C6H5)2PO]2-C6H2-4-F}(C4H4NO4S), a Pd(II) acesulfamato complex containing a similar fluoro-pincer ligand (Wicker et al., 2011). Detailed lists of dimensions are available in the archived CIF.

Experimental

The first step entailed generating a neutral nickel(II) halido pincer complex, abbreviated as Pr{NiF}Cl. An anhydrous solution of 5-fluororesorcinol (330 mg, 2.58 mmol) in THF was prepared in a 100-ml Kontes Teflon screw-cap flask inside a glovebox. To this solution was added via syringe 1.50 ml NEt3 (10.77 mmol) followed by 850 µL of ClPPri2 (5.34 mmol); immediately a large volume of white precipitate formed. The flask was brought out of the glovebox and heated for 20 minutes at 80 °C; thereafter the flask was returned to the glovebox, where 0.57 grams of anhydrous NiCl2 (4.40 mmol) was added to afford an orange mixture. After 24 h under heavy stirring at 80 °C, the resulting green-yellow mixture was filtered through a plug of Celite and concentrated under vacuum. This solution was layered with pentane and left overnight in a -30 °C freezer to give dark yellow-brown crystals of Pr{NiF}Cl (608 mg, 52% yield).

Complex I, [Ni(C3H2N2)(C12H16FO2P2)]PF6, abbreviated as Pr{NiF}(Pz)]PF6, was prepared as follows. Pr{NiF}Cl (32.4 mg, 0.0799 mmol) was stirred at ambient temperature for 24 h with TlPF6 (Strem Chemicals; 1.15 mol equiv.) in CDCl3 (Cambridge Isotopes Lab; 1.25 ml) to which 25 µL CH3CN (Fisher reagent) had been added. The resulting mixture was filtered to remove insoluble TlCl and excess TlPF6. To the resulting yellow-orange solution of Pr{NiF}(CH3CN)]PF6 was added a slight excess of solid pyrazole (Aldrich; 5.7 mg), and the reaction solution was stirred one hour. Then it was subjected to vapor diffusion with 30 ml me thyl tert-butyl ether (MTBE; Fisher reagent) at 22 °C for 3 days. The very pale yellow liquid of the resulting mixture was removed from the vial by a small-diameter syringe needle, and the rod-like orange crystals were washed twice with 1.5 ml of MTBE, removed from the vial, and then air-dried overnight in the dark (91% yield). The complex was characterized by NMR at 24 °C in CDCl3. Unusual features of the spectra are discussed below the data tabulation.

1H: (relative to internal TMS) δ 11.66 (broad singlet, 0.74 H); δ 8.07 (overlapping doublet of doublets, 1H); δ 7.64 (overlapping doublet of doublets, 1H); δ 6.58 (2H, doublet, 3JF—H=9.6 Hz) δ 2.34 (4H, septuplet, 3JH—H=7.1 Hz); δ 1.35 (overlapping inequivalent triplets, 12H); δ 1.08 (overlapping inequivalent triplets, 12H)

19F: (relative to internal C6H5CF3 at δ -63.00; (Ji et al., 2005)) aryl-F at δ -109.41 (triplet of triplets, 3JH—F=9.6 Hz, 5JP—F=1.0 Hz) and counterion PF6- at δ -72.28 (doublet, 2JP—F=713 Hz)

31P: (relative to external 85% aq. phosphoric acid) pincer-P at δ 190.31 (doublet, 5JP—F=1.0 Hz) and counterion PF6- at δ -143.79 (septuplet, 2JP—F=713 Hz)

13C: (relative to internal TMS)

Pyrazole: δ 108.59(s), δ 135.21(s), δ 141.43(s).

Pincer Aryl: ipsoδ 115.49(t of d; 4JF—C=2.9 Hz, 2JP—C=21 Hz) orthoδ 168.55 (d of t; 3JF—C=15 Hz, 2JP—C~7.4 Hz) metaδ 94.89(d of t; 2JF—C=33 Hz, 4JP—C~6.6 Hz) paraδ 165.16 (d; 1JF—C=246 Hz Pri2P: methyne, δ 27.66(t; 1JP—C=11 Hz) methyls δ 16.58(t; 2JP—C=11 Hz), δ 16.41(s)

Integrals recorded for 1H signals of Pr{NiF}(Pz)]PF6 match expected values except for the low-field pyrazole N—H resonance in which strong hydrogen-bonding to the hexafluorophosphate counterion is likely. Overlap of 1H triplets for the inequivalent isopropyl methyl groups created by different rotation rates around the Ni—Pz, P—C, and C—C bonds affords pseudo-quartets centered at δ 1.35 and δ 1.08 (Fig. 2). The same rotational phenomena generate a more unusual 13C-NMR methyls pattern (Fig. 3), in which a triplet at δ 16.58 (2JP—C=11 Hz) and singlet at δ 16.41 (no measurable P—C coupling observed) of equal intensity appear. Recording the 13C-NMR spectrum with longer relaxation delay (4 s versus 1 s) or at 44 °C affords no change in this pattern.

Refinement

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the H atoms on the pyrazole carbons, Uiso(H) = 1.2Ueq(N) and an N—H distance of 0.86 Å for the H atom on the pyrazole N, Uiso(H) = 1.2Ueq(C) and C—H distances of 0.98 Å for the H atoms on the tertiary carbons, and Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.

Fig. 2.

Fig. 2.

1H NMR spectrum of the title compound at 23 °C.

Fig. 3.

Fig. 3.

13C NMR spectrum of the title compound at 23 °C.

Crystal data

[Ni(C18H30FO2P2)(C3H4N2)]PF6 F(000) = 1304
Mr = 631.12 Dx = 1.439 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 9.0380 (9) Å θ = 9.5–13.0°
b = 20.1878 (16) Å µ = 0.90 mm1
c = 16.1480 (16) Å T = 290 K
β = 98.659 (8)° Prism, yellow
V = 2912.7 (5) Å3 0.58 × 0.52 × 0.34 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 3432 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
Graphite monochromator θmax = 25.0°, θmin = 2.0°
θ/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = 0→23
Tmin = 0.265, Tmax = 0.315 l = −19→18
5464 measured reflections 3 standard reflections every 120 min
5122 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.9656P] where P = (Fo2 + 2Fc2)/3
5122 reflections (Δ/σ)max < 0.001
325 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.32898 (5) 0.127947 (18) 0.28825 (2) 0.04161 (12)
P1 0.23694 (10) 0.18930 (4) 0.37905 (6) 0.0479 (2)
P2 0.39378 (11) 0.04384 (4) 0.21782 (5) 0.0479 (2)
P3 0.20240 (11) 0.13469 (5) 0.89133 (6) 0.0559 (2)
O1 0.1773 (3) 0.13751 (11) 0.44521 (15) 0.0617 (7)
O2 0.3652 (3) −0.02228 (10) 0.27213 (14) 0.0609 (7)
N1 0.3831 (3) 0.19614 (12) 0.21502 (16) 0.0446 (6)
N2 0.4812 (3) 0.24504 (14) 0.23638 (18) 0.0568 (7)
H2A 0.5305 0.2502 0.2858 0.068*
F1 0.1762 (3) −0.08905 (11) 0.51487 (15) 0.0953 (8)
F2 0.1974 (3) 0.21394 (10) 0.87960 (15) 0.0789 (7)
F3 0.1327 (3) 0.14307 (11) 0.97561 (13) 0.0792 (7)
F4 0.0382 (2) 0.13121 (10) 0.84026 (14) 0.0761 (6)
F5 0.2707 (3) 0.12876 (13) 0.80763 (16) 0.0966 (8)
F6 0.2071 (3) 0.05746 (10) 0.90361 (15) 0.0837 (7)
F7 0.3643 (3) 0.14096 (13) 0.94371 (17) 0.0969 (8)
C1 0.2761 (4) 0.05995 (15) 0.3580 (2) 0.0487 (8)
C2 0.2103 (4) 0.07201 (16) 0.4286 (2) 0.0519 (8)
C3 0.1765 (4) 0.02385 (18) 0.4828 (2) 0.0658 (10)
H3A 0.1341 0.0340 0.5303 0.079*
C4 0.2087 (5) −0.04016 (19) 0.4630 (2) 0.0680 (11)
C5 0.2699 (5) −0.05769 (17) 0.3935 (2) 0.0650 (10)
H5A 0.2883 −0.1017 0.3813 0.078*
C6 0.3028 (4) −0.00660 (16) 0.3426 (2) 0.0527 (8)
C7 0.3621 (4) 0.24172 (17) 0.4498 (2) 0.0573 (9)
H7A 0.4045 0.2751 0.4161 0.069*
C8 0.4897 (5) 0.1988 (2) 0.4920 (3) 0.0838 (13)
H8A 0.5581 0.2255 0.5291 0.126*
H8B 0.5413 0.1794 0.4501 0.126*
H8C 0.4503 0.1643 0.5233 0.126*
C9 0.2836 (5) 0.2780 (2) 0.5141 (3) 0.0912 (15)
H9A 0.3545 0.3054 0.5487 0.137*
H9B 0.2422 0.2463 0.5485 0.137*
H9C 0.2047 0.3051 0.4855 0.137*
C10 0.0709 (4) 0.23715 (19) 0.3406 (3) 0.0684 (10)
H10A 0.0314 0.2559 0.3888 0.082*
C11 0.1109 (5) 0.2940 (2) 0.2859 (3) 0.0895 (14)
H11A 0.0225 0.3190 0.2659 0.134*
H11B 0.1525 0.2765 0.2392 0.134*
H11C 0.1831 0.3223 0.3183 0.134*
C12 −0.0481 (5) 0.1917 (2) 0.2934 (3) 0.1067 (18)
H12A −0.1359 0.2171 0.2730 0.160*
H12B −0.0734 0.1577 0.3304 0.160*
H12C −0.0099 0.1717 0.2470 0.160*
C13 0.2776 (4) 0.02806 (16) 0.1181 (2) 0.0573 (9)
H13A 0.3016 0.0619 0.0786 0.069*
C14 0.1133 (5) 0.0365 (2) 0.1272 (3) 0.0880 (14)
H14A 0.0522 0.0287 0.0742 0.132*
H14B 0.0968 0.0808 0.1456 0.132*
H14C 0.0875 0.0054 0.1677 0.132*
C15 0.3067 (7) −0.0397 (2) 0.0809 (3) 0.1052 (18)
H15A 0.2431 −0.0450 0.0281 0.158*
H15B 0.2856 −0.0740 0.1187 0.158*
H15C 0.4095 −0.0425 0.0727 0.158*
C16 0.5878 (4) 0.03345 (18) 0.2048 (2) 0.0621 (10)
H16A 0.5979 −0.0099 0.1789 0.074*
C17 0.6377 (5) 0.0857 (2) 0.1476 (3) 0.0824 (13)
H17A 0.7405 0.0783 0.1417 0.124*
H17B 0.6274 0.1288 0.1713 0.124*
H17C 0.5767 0.0832 0.0936 0.124*
C18 0.6859 (5) 0.0334 (3) 0.2900 (3) 0.1030 (16)
H18A 0.7886 0.0275 0.2828 0.155*
H18B 0.6562 −0.0023 0.3233 0.155*
H18C 0.6748 0.0747 0.3177 0.155*
C19 0.4934 (5) 0.28489 (18) 0.1717 (2) 0.0706 (11)
H19A 0.5543 0.3221 0.1725 0.085*
C20 0.4012 (5) 0.26112 (18) 0.1053 (2) 0.0665 (10)
H20A 0.3859 0.2782 0.0512 0.080*
C21 0.3346 (4) 0.20647 (16) 0.1337 (2) 0.0535 (9)
H21A 0.2648 0.1800 0.1008 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0490 (2) 0.0336 (2) 0.0428 (2) −0.00062 (18) 0.00846 (17) −0.00333 (17)
P1 0.0493 (5) 0.0408 (4) 0.0564 (5) −0.0048 (4) 0.0168 (4) −0.0095 (4)
P2 0.0663 (6) 0.0357 (4) 0.0420 (5) 0.0042 (4) 0.0095 (4) −0.0027 (3)
P3 0.0559 (6) 0.0504 (5) 0.0615 (6) 0.0087 (4) 0.0092 (4) 0.0069 (4)
O1 0.0703 (16) 0.0510 (14) 0.0714 (16) −0.0127 (12) 0.0351 (13) −0.0105 (12)
O2 0.0977 (19) 0.0355 (12) 0.0512 (14) 0.0088 (12) 0.0169 (13) 0.0017 (10)
N1 0.0494 (16) 0.0355 (14) 0.0489 (16) −0.0027 (12) 0.0070 (13) −0.0046 (11)
N2 0.0654 (19) 0.0532 (16) 0.0511 (17) −0.0163 (15) 0.0069 (14) −0.0071 (14)
F1 0.145 (2) 0.0653 (15) 0.0830 (16) −0.0156 (15) 0.0418 (16) 0.0215 (13)
F2 0.0833 (16) 0.0520 (12) 0.0982 (17) 0.0014 (11) 0.0041 (13) 0.0099 (12)
F3 0.0881 (16) 0.0868 (16) 0.0655 (14) 0.0200 (13) 0.0205 (12) 0.0081 (12)
F4 0.0689 (14) 0.0729 (14) 0.0799 (15) −0.0058 (11) −0.0105 (11) 0.0113 (12)
F5 0.119 (2) 0.0951 (18) 0.0864 (17) 0.0124 (15) 0.0492 (15) 0.0068 (14)
F6 0.1030 (19) 0.0539 (13) 0.0971 (18) 0.0157 (12) 0.0244 (14) 0.0103 (12)
F7 0.0593 (14) 0.109 (2) 0.116 (2) 0.0090 (14) −0.0080 (13) 0.0128 (16)
C1 0.055 (2) 0.0428 (17) 0.0487 (19) −0.0047 (15) 0.0081 (16) −0.0002 (14)
C2 0.056 (2) 0.0430 (18) 0.058 (2) −0.0083 (16) 0.0145 (17) −0.0068 (16)
C3 0.081 (3) 0.063 (2) 0.057 (2) −0.016 (2) 0.024 (2) 0.0002 (19)
C4 0.086 (3) 0.057 (2) 0.062 (2) −0.016 (2) 0.014 (2) 0.0118 (19)
C5 0.092 (3) 0.0413 (19) 0.063 (2) −0.0023 (18) 0.014 (2) 0.0042 (17)
C6 0.070 (2) 0.0414 (17) 0.0461 (19) −0.0010 (16) 0.0062 (17) 0.0003 (15)
C7 0.064 (2) 0.053 (2) 0.057 (2) −0.0149 (17) 0.0145 (17) −0.0149 (17)
C8 0.075 (3) 0.086 (3) 0.085 (3) −0.015 (2) −0.006 (2) −0.004 (2)
C9 0.117 (4) 0.084 (3) 0.079 (3) −0.018 (3) 0.034 (3) −0.037 (3)
C10 0.056 (2) 0.067 (2) 0.085 (3) 0.0098 (19) 0.019 (2) −0.015 (2)
C11 0.092 (3) 0.072 (3) 0.104 (4) 0.032 (3) 0.014 (3) 0.007 (3)
C12 0.058 (3) 0.104 (4) 0.149 (5) 0.007 (3) −0.013 (3) −0.032 (3)
C13 0.085 (3) 0.0400 (18) 0.0441 (19) −0.0001 (18) 0.0004 (18) −0.0052 (15)
C14 0.082 (3) 0.093 (3) 0.083 (3) −0.020 (3) −0.008 (2) −0.007 (3)
C15 0.187 (5) 0.054 (2) 0.064 (3) 0.021 (3) −0.013 (3) −0.025 (2)
C16 0.067 (2) 0.056 (2) 0.064 (2) 0.0121 (19) 0.0124 (19) −0.0068 (18)
C17 0.073 (3) 0.083 (3) 0.098 (3) 0.009 (2) 0.035 (2) 0.004 (3)
C18 0.080 (3) 0.130 (4) 0.094 (4) 0.011 (3) −0.003 (3) 0.013 (3)
C19 0.087 (3) 0.056 (2) 0.072 (3) −0.022 (2) 0.023 (2) 0.004 (2)
C20 0.093 (3) 0.055 (2) 0.051 (2) 0.004 (2) 0.012 (2) 0.0097 (18)
C21 0.066 (2) 0.0458 (19) 0.046 (2) 0.0012 (17) −0.0004 (17) −0.0013 (15)

Geometric parameters (Å, º)

Ni1—C1 1.883 (3) C8—H8C 0.9600
Ni1—N1 1.925 (2) C9—H9A 0.9600
Ni1—P2 2.1727 (9) C9—H9B 0.9600
Ni1—P1 2.1779 (9) C9—H9C 0.9600
P1—O1 1.643 (2) C10—C11 1.525 (5)
P1—C10 1.814 (4) C10—C12 1.528 (5)
P1—C7 1.821 (3) C10—H10A 0.9800
P2—O2 1.639 (2) C11—H11A 0.9600
P2—C16 1.810 (4) C11—H11B 0.9600
P2—C13 1.814 (3) C11—H11C 0.9600
P3—F6 1.571 (2) C12—H12A 0.9600
P3—F5 1.573 (2) C12—H12B 0.9600
P3—F7 1.581 (2) C12—H12C 0.9600
P3—F4 1.587 (2) C13—C14 1.523 (5)
P3—F3 1.592 (2) C13—C15 1.532 (5)
P3—F2 1.611 (2) C13—H13A 0.9800
O1—C2 1.391 (4) C14—H14A 0.9600
O2—C6 1.380 (4) C14—H14B 0.9600
N1—C21 1.337 (4) C14—H14C 0.9600
N1—N2 1.337 (3) C15—H15A 0.9600
N2—C19 1.336 (4) C15—H15B 0.9600
N2—H2A 0.8600 C15—H15C 0.9600
F1—C4 1.355 (4) C16—C17 1.515 (5)
C1—C2 1.384 (4) C16—C18 1.521 (5)
C1—C6 1.394 (4) C16—H16A 0.9800
C2—C3 1.373 (5) C17—H17A 0.9600
C3—C4 1.373 (5) C17—H17B 0.9600
C3—H3A 0.9300 C17—H17C 0.9600
C4—C5 1.370 (5) C18—H18A 0.9600
C5—C6 1.379 (5) C18—H18B 0.9600
C5—H5A 0.9300 C18—H18C 0.9600
C7—C8 1.519 (5) C19—C20 1.344 (5)
C7—C9 1.530 (5) C19—H19A 0.9300
C7—H7A 0.9800 C20—C21 1.369 (5)
C8—H8A 0.9600 C20—H20A 0.9300
C8—H8B 0.9600 C21—H21A 0.9300
C1—Ni1—N1 178.79 (12) H8B—C8—H8C 109.5
C1—Ni1—P2 81.73 (10) C7—C9—H9A 109.5
N1—Ni1—P2 97.11 (8) C7—C9—H9B 109.5
C1—Ni1—P1 81.64 (10) H9A—C9—H9B 109.5
N1—Ni1—P1 99.49 (8) C7—C9—H9C 109.5
P2—Ni1—P1 163.19 (4) H9A—C9—H9C 109.5
O1—P1—C10 103.04 (16) H9B—C9—H9C 109.5
O1—P1—C7 101.28 (15) C11—C10—C12 111.9 (4)
C10—P1—C7 108.00 (18) C11—C10—P1 110.0 (3)
O1—P1—Ni1 105.77 (9) C12—C10—P1 109.6 (3)
C10—P1—Ni1 116.93 (14) C11—C10—H10A 108.4
C7—P1—Ni1 119.25 (12) C12—C10—H10A 108.4
O2—P2—C16 101.63 (16) P1—C10—H10A 108.4
O2—P2—C13 102.43 (15) C10—C11—H11A 109.5
C16—P2—C13 108.56 (18) C10—C11—H11B 109.5
O2—P2—Ni1 106.24 (9) H11A—C11—H11B 109.5
C16—P2—Ni1 119.58 (13) C10—C11—H11C 109.5
C13—P2—Ni1 115.87 (12) H11A—C11—H11C 109.5
F6—P3—F5 91.51 (14) H11B—C11—H11C 109.5
F6—P3—F7 90.39 (14) C10—C12—H12A 109.5
F5—P3—F7 90.82 (16) C10—C12—H12B 109.5
F6—P3—F4 91.55 (13) H12A—C12—H12B 109.5
F5—P3—F4 90.44 (14) C10—C12—H12C 109.5
F7—P3—F4 177.66 (15) H12A—C12—H12C 109.5
F6—P3—F3 90.24 (13) H12B—C12—H12C 109.5
F5—P3—F3 178.25 (14) C14—C13—C15 111.4 (4)
F7—P3—F3 89.28 (14) C14—C13—P2 109.7 (3)
F4—P3—F3 89.40 (13) C15—C13—P2 113.2 (3)
F6—P3—F2 179.49 (15) C14—C13—H13A 107.4
F5—P3—F2 88.98 (14) C15—C13—H13A 107.4
F7—P3—F2 89.46 (13) P2—C13—H13A 107.4
F4—P3—F2 88.59 (12) C13—C14—H14A 109.5
F3—P3—F2 89.27 (13) C13—C14—H14B 109.5
C2—O1—P1 112.2 (2) H14A—C14—H14B 109.5
C6—O2—P2 111.79 (19) C13—C14—H14C 109.5
C21—N1—N2 104.2 (3) H14A—C14—H14C 109.5
C21—N1—Ni1 129.7 (2) H14B—C14—H14C 109.5
N2—N1—Ni1 126.1 (2) C13—C15—H15A 109.5
C19—N2—N1 111.9 (3) C13—C15—H15B 109.5
C19—N2—H2A 124.1 H15A—C15—H15B 109.5
N1—N2—H2A 124.1 C13—C15—H15C 109.5
C2—C1—C6 115.1 (3) H15A—C15—H15C 109.5
C2—C1—Ni1 122.9 (2) H15B—C15—H15C 109.5
C6—C1—Ni1 121.9 (3) C17—C16—C18 111.5 (4)
C3—C2—C1 124.4 (3) C17—C16—P2 111.9 (3)
C3—C2—O1 118.4 (3) C18—C16—P2 109.8 (3)
C1—C2—O1 117.2 (3) C17—C16—H16A 107.9
C4—C3—C2 116.3 (3) C18—C16—H16A 107.9
C4—C3—H3A 121.9 P2—C16—H16A 107.9
C2—C3—H3A 121.9 C16—C17—H17A 109.5
F1—C4—C5 118.0 (3) C16—C17—H17B 109.5
F1—C4—C3 117.9 (4) H17A—C17—H17B 109.5
C5—C4—C3 124.0 (3) C16—C17—H17C 109.5
C4—C5—C6 116.4 (3) H17A—C17—H17C 109.5
C4—C5—H5A 121.8 H17B—C17—H17C 109.5
C6—C5—H5A 121.8 C16—C18—H18A 109.5
C5—C6—O2 118.1 (3) C16—C18—H18B 109.5
C5—C6—C1 123.7 (3) H18A—C18—H18B 109.5
O2—C6—C1 118.1 (3) C16—C18—H18C 109.5
C8—C7—C9 111.6 (3) H18A—C18—H18C 109.5
C8—C7—P1 107.9 (2) H18B—C18—H18C 109.5
C9—C7—P1 113.3 (3) N2—C19—C20 107.1 (3)
C8—C7—H7A 107.9 N2—C19—H19A 126.4
C9—C7—H7A 107.9 C20—C19—H19A 126.4
P1—C7—H7A 107.9 C19—C20—C21 105.7 (3)
C7—C8—H8A 109.5 C19—C20—H20A 127.1
C7—C8—H8B 109.5 C21—C20—H20A 127.1
H8A—C8—H8B 109.5 N1—C21—C20 111.1 (3)
C7—C8—H8C 109.5 N1—C21—H21A 124.5
H8A—C8—H8C 109.5 C20—C21—H21A 124.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5249).

References

  1. Chen, T., Yang, L., Li, L. & Huang, K.-W. (2012). Tetrahedron, 68, 6152–6157.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Enraf–Nonius (1993). CAD-4-PC Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Riley, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM-213.
  6. Ji, S., Hoye, T. R. & Macasko, C. W. (2005). Macromolecules, 38, 4679–4686.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Peng, Q.-L., Zhao, G.-Q., Chen, L.-H. & Xue, L.-W. (2010). Acta Cryst. E66, m1127–m1128. [DOI] [PMC free article] [PubMed]
  9. Salah, A. B. & Zargarian, D. (2011). Dalton Trans. 40, 8977–8985. [DOI] [PubMed]
  10. Salem, N. M. H., El-Sayed, L., Foro, S., Haase, W. & Iskander, M. F. (2007). Polyhedron, 26, 4161–4172.
  11. Salem, N. M. H., El-Sayed, L. & Iskander, M. F. (2008). Polyhedron, 27, 3215–3226.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Wicker, B. F., Seaman, R., Hoffman, N. W., Davis, J. H. & Sykora, R. E. (2011). Acta Cryst. E67, m286–m287. [DOI] [PMC free article] [PubMed]
  15. Zhang, J., Adhikary, A., King, K. M., Krause, J. A. & Guan, H. (2012). Dalton Trans. 41, 7959–7968. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039207/hg5249sup1.cif

e-68-m1282-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039207/hg5249Isup2.hkl

e-68-m1282-Isup2.hkl (250.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES