Abstract
The structure of the complex formed in solution between yeast tRNAPhe and Escherichia coli tRNAGlu2 has been studied by small-angle x-ray scattering. The complex has a radius of gyration of 4.0 nm and an electron-pair distance distribution that is incompatible with a model composed to two tRNAs joined at their complementary anticodons and exhibiting the L shape seen in the crystal. Instead a model in which the two tRNAs, still bound via the anticodons, assume a conformation with the acceptor arms folded toward the anticodon arms agrees with the observed scattering curves.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crick F. H., Brenner S., Klug A., Pieczenik G. A speculation on the origin of protein synthesis. Orig Life. 1976 Dec;7(4):389–397. doi: 10.1007/BF00927934. [DOI] [PubMed] [Google Scholar]
- Davanloo P., Sprinzl M., Cramer F. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Biochemistry. 1979 Jul 24;18(15):3189–3199. doi: 10.1021/bi00582a001. [DOI] [PubMed] [Google Scholar]
- Ehrenberg M., Rigler R., Wintermeyer W. On the structure and conformational dynamics of yeast phenylalanine-accepting transfer ribonucleic acid in solution. Biochemistry. 1979 Oct 16;18(21):4588–4599. doi: 10.1021/bi00588a020. [DOI] [PubMed] [Google Scholar]
- Ehrlich R., Lefevre J. F., Remy P. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood. Eur J Biochem. 1980 Jan;103(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04298.x. [DOI] [PubMed] [Google Scholar]
- Eisinger J. Complex formation between transfer RNA'S with complementary anticodons. Biochem Biophys Res Commun. 1971 May 21;43(4):854–861. doi: 10.1016/0006-291x(71)90695-4. [DOI] [PubMed] [Google Scholar]
- Geerdes H. A., Van Boom J. H., Hilbers C. W. Nuclear magnetic resonance studies of codon-anticodon interaction in tRNAPhe. I. Effect of binding complementary tetra and pentanucleotides to the anticodon. J Mol Biol. 1980 Sep 15;142(2):195–217. doi: 10.1016/0022-2836(80)90045-5. [DOI] [PubMed] [Google Scholar]
- Grosjean H. J., de Henau S., Crothers D. M. On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci U S A. 1978 Feb;75(2):610–614. doi: 10.1073/pnas.75.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey S. C., McCammon J. A. Intramolecular flexibility in phenylalanine transfer RNA. Nature. 1981 Nov 19;294(5838):286–287. doi: 10.1038/294286a0. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J. Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4334–4338. doi: 10.1073/pnas.75.9.4334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hänggi U. J., Streeck R. E., Voigt H. P., Zachau H. G. Phosphorylation of dephosphorylated tRNA and oligonucleotides by polynucleotide kinase. Biochim Biophys Acta. 1970 Oct 15;217(2):278–293. doi: 10.1016/0005-2787(70)90527-7. [DOI] [PubMed] [Google Scholar]
- KRATKY O. X-RAY SMALL ANGLE SCATTERING WITH SUBSTANCES OF BIOLOGICAL INTEREST IN DILUTED SOLUTIONS. Prog Biophys Mol Biol. 1963;13:105–173. doi: 10.1016/s0079-6107(63)80015-2. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
- Kratky O., Leopold H., Stabinger H. The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol. 1973;27:98–110. doi: 10.1016/s0076-6879(73)27007-6. [DOI] [PubMed] [Google Scholar]
- Kurland C. G., Rigler R., Ehrenberg M., Blomberg C. Allosteric mechanism for codon-dependent tRNA selection on ribosomes. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4248–4251. doi: 10.1073/pnas.72.11.4248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lake J. A. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A. 1977 May;74(5):1903–1907. doi: 10.1073/pnas.74.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefevre J. F., Bacha H., Renaud M., Ehrlich R., Gangloff J., Von der Haar F., Remy P. Fluorimetric study of yeast tRNAPheCCF in the complex with phenylalanyl-tRNA synthetase. Evidence for a correlation between the structural adaptation of both macromolecules and the appearance of the acylation activity. Eur J Biochem. 1981 Jul;117(3):439–447. [PubMed] [Google Scholar]
- Moras D., Comarmond M. B., Fischer J., Weiss R., Thierry J. C., Ebel J. P., Giegé R. Crystal structure of yeast tRNAAsp. Nature. 1980 Dec 25;288(5792):669–674. doi: 10.1038/288669a0. [DOI] [PubMed] [Google Scholar]
- Möller A., Wild U., Riesner D., Gassen H. G. Evidence from ultraviolet absorbance measurements for a codon-induced conformational change in lysine tRNA from Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3266–3270. doi: 10.1073/pnas.76.7.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ninio J., Luzzati V., Yaniv M. Comparative small-angle x-ray scattering studies on unacylated, acylated and cross-linked Escherichia coli transfer RNA I Val . J Mol Biol. 1972 Nov 14;71(2):217–229. doi: 10.1016/0022-2836(72)90347-6. [DOI] [PubMed] [Google Scholar]
- Ofengand J., Henes C. The function of pseudouridylic acid in transfer ribonucleic acid. II. Inhibition of amino acyl transfer ribonucleic acid-ribosome complex formation by ribothymidylyl-pseudouridylyl-cytidylyl-guanosine 3'-phosphate. J Biol Chem. 1969 Nov 25;244(22):6241–6253. [PubMed] [Google Scholar]
- Olson T., Fournier M. J., Langley K. H., Ford N. C., Jr Detection of a major conformational change in transfer ribonucleic acid by laser light scattering. J Mol Biol. 1976 Apr 5;102(2):193–203. doi: 10.1016/s0022-2836(76)80048-4. [DOI] [PubMed] [Google Scholar]
- Pachmann U., Cronvall E., Rigler R., Hirsch R., Wintermeyer W., Zachau H. G. On the specificity of interactions between transfer ribonucleic acids and aminoacyl-tRNA synthetases. Eur J Biochem. 1973 Nov 1;39(1):265–273. doi: 10.1111/j.1432-1033.1973.tb03123.x. [DOI] [PubMed] [Google Scholar]
- Pilz I., Glatter O., Kratky O. Small-angle X-ray scattering. Methods Enzymol. 1979;61:148–249. doi: 10.1016/0076-6879(79)61013-3. [DOI] [PubMed] [Google Scholar]
- Pilz I., Kratky O., Cramer F., von der Haar F., Schlimme E. On the conformation of phenylalanine specific transfer RNA. Studies on size and shape of the molecule by x-ray small angle scattering. Eur J Biochem. 1970 Sep;15(3):401–409. doi: 10.1111/j.1432-1033.1970.tb01021.x. [DOI] [PubMed] [Google Scholar]
- Pilz I., Malnig F., Kratky O., Von der Haar F. On the conformation of serine-specific transfer RNA. Studies by small-angle X-ray scattering and ultraviolet absorption of the molecule in solution. Eur J Biochem. 1977 May 2;75(1):35–41. doi: 10.1111/j.1432-1033.1977.tb11501.x. [DOI] [PubMed] [Google Scholar]
- Quigley G. J., Seeman N. C., Wang A. H., Suddath F. L., Rich A. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nucleic Acids Res. 1975 Dec;2(12):2329–2341. doi: 10.1093/nar/2.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quigley G. J., Wang A. H., Seeman N. C., Suddath F. L., Rich A., Sussman J. L., Kim S. H. Hydrogen bonding in yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4866–4870. doi: 10.1073/pnas.72.12.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigler R., Nilsson L., Wintermeyer W., Pachmann U., Zachau H. G. Conformational states of yeast tRNA Phe in the complex with cognate and non cognate synthetases. Nucleic Acids Res. 1981 Feb 25;9(4):1031–1044. doi: 10.1093/nar/9.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz U., Menzel H. M., Gassen H. G. Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit. Biochemistry. 1976 Jun 1;15(11):2484–2490. doi: 10.1021/bi00656a035. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Wagner T., Lorenz S., Erdmann V. A. Regions of tRNA important for binding to the ribosomal A and P sites. Biochemistry. 1976 Jul 13;15(14):3031–3039. doi: 10.1021/bi00659a015. [DOI] [PubMed] [Google Scholar]
- Thang M. N., Beltchev B., Grunberg-Manago M. Phosphorolysis of tRNA. Multiple conformational states of the tRNA in solution. Eur J Biochem. 1971 Mar 11;19(2):184–193. doi: 10.1111/j.1432-1033.1971.tb01303.x. [DOI] [PubMed] [Google Scholar]
- Wagner R., Garrett R. A. Chemical evidence for a codon-induced allosteric change in tRNALys involving the 7-methylguanosine residue 46. Eur J Biochem. 1979 Jul;97(2):615–621. doi: 10.1111/j.1432-1033.1979.tb13151.x. [DOI] [PubMed] [Google Scholar]
- Wang C. C., Ford N. C., Jr, Fournier M. J. Laser light-scattering analysis of the dimerization of transfer ribonucleic acids with complementary anticodons. Biopolymers. 1981 Jan;20(1):155–168. doi: 10.1002/bip.1981.360200111. [DOI] [PubMed] [Google Scholar]
- Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]
