Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 19;68(Pt 10):m1284–m1285. doi: 10.1107/S1600536812038445

Dibutyl­ammonium bis­(hydrogen methylphosphonato-κO)triphenylstannate(IV)

Tidiane Diop a,*, Libasse Diop a, Djibril Fall b, Arie van Lee c
PMCID: PMC3470160  PMID: 23125604

Abstract

The asymmetric unit of the title organotin salt, (C8H20N)[Sn(C6H5)3(CH4O3P)2], contains two dibutyl­ammonium cations and two stannate(IV) anions consisting each of two monodentately bonding methyl hydrogenphosphate groups attached to an Sn(C6H5) unit. The overall coordination environment of the two SnIV atoms is trigonal–bipyramidal defined by three phenyl C atoms in equatorial positions and two methyl hydrogenphosphate O atoms at the apical sites. In the crystal, the stannate(IV) anions are linked to each other via pairs of short O—H⋯O hydrogen bonds, leading to an infinite chain extending parallel to the b-axis direction. Neighbouring chains are linked by N—H⋯O hydrogen bonds involving the butyl­ammonium cations, giving a two-dimensional structure parallel to the ab plane. The crystal under investigation was found to be twinned by reticular merohedry with twin fractions of 0.5342 (7):0.4658 (7).

Related literature  

For general background to and applications of tin(IV) compounds, see: Davies et al. (2008); Gielen (2002); Molloy et al. (1984). For related structures, see: Adair et al. (2003); Chunlin et al. (2008); Diop et al. (2002, 2011); Gueye et al. (2011); Sow et al. (2012). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).graphic file with name e-68-m1284-scheme1.jpg

Experimental  

Crystal data  

  • (C8H20N)[Sn(C6H5)3(CH4O3P)2]

  • M r = 670.28

  • Monoclinic, Inline graphic

  • a = 16.1963 (8) Å

  • b = 18.9088 (8) Å

  • c = 21.1989 (11) Å

  • β = 93.220 (4)°

  • V = 6482.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 175 K

  • 0.30 × 0.25 × 0.10 mm

Data collection  

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.961, T max = 1.000

  • 64843 measured reflections

  • 26060 independent reflections

  • 17225 reflections with I > 2σ(I)

  • R int = 0.085

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.067

  • S = 0.99

  • 17225 reflections

  • 686 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.66 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CRYSTALS and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038445/wm2676sup1.cif

e-68-m1284-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038445/wm2676Isup2.hkl

e-68-m1284-Isup2.hkl (1.6MB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—O101 2.175 (4)
Sn1—O106 2.188 (3)
Sn1—C111 2.128 (6)
Sn1—C117 2.137 (6)
Sn1—C123 2.125 (5)
Sn2—O201 2.188 (3)
Sn2—O206 2.169 (4)
Sn2—C211 2.125 (6)
Sn2—C217 2.126 (6)
Sn2—C223 2.134 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O103—H1031⋯O109i 0.85 1.73 2.582 (10) 180 (1)
O108—H1081⋯O104ii 0.85 1.64 2.490 (10) 180 (1)
O203—H2031⋯O209iii 0.85 1.63 2.478 (10) 180 (1)
O208—H2081⋯O204iv 0.85 1.71 2.561 (10) 180 (1)
N10—H101⋯O209iii 0.89 1.90 2.772 (10) 165 (1)
N10—H102⋯O109 0.90 1.92 2.777 (10) 160 (1)
N20—H201⋯O204iv 0.89 1.95 2.780 (10) 154 (1)
N20—H202⋯O104 0.90 1.88 2.756 (10) 167 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Organotin(IV) complexes are extensively studied due to their industrial applications as well as for their biocidal properties (Molloy et al., 1984; Gielen, 2002; Davies et al., 2008). Our group has conducted research on SnMe3 and SnPh3 residues containing derivatives with mono- and polybasic oxyanions such as C2O42- (Gueye et al., 2011; Sow et al., 2012) and PhP(H)O2- (Diop et al., 2011). Here we report the structure of the title compound, [(C4H9)2NH2]+[Sn(C6H5)3(CH3PO2OH)2]-, (I).

The asymmetric unit of compound (I) is illustrated in Fig. 1. It consists of two dibutylammonium cations and two organotin complexes consisting of two monodentate MePO3H- anions bonded to SnPh3; the SnIV atoms exhibit a trans trigonal bipyramidal coordination environment consisting of three phenyl carbon atoms and two MePO3H- oxygen atoms. The trigonal plane of the Sn atoms is defined by the three phenyl groups whereas the axial positions are occupied by oxygen atoms from the methyl hydrogenphosphate tetrahedra. A similar arrangement around tin(IV) has been observed in the crystal structure of {[(CH3)3Sn]4(O3PPh)2}n (Chunlin et al., 2008). The sums of the angles at the tin(IV) positions by the ipso-carbons atoms [119.9 (2)°, 121.2 (2)°, 118.8 (2)°, and 122.4 (2)°, 119.0 (2)° and 118.6 (2)° for the two SnIV entities] are 359.9° and 360.0°, respectively; the corresponding axial O101—Sn1—O106 and O201—Sn2—O206 angles are 174.71 (14)° and 174.15 (14)°, respectively, indicating a nearly perfect trans trigonal bipyramidal arrangement. The Sn—C bond lengths are almost identical within the experimental error (Sn1—C111: 2.128 (6) Å; Sn1—C117: 2.137 (6) Å; Sn1—C123 2.125 (5) Å; Sn2—C211: 2.125 (6) Å; Sn2—C217: 2.126 (6) Å; Sn2—C223 2.134 (6) Å] and lie in the range reported for related structures (Gueye et al., 2011). The two axial Sn—O distances, [Sn1—O101 2.175 (4) Å; Sn1—O106 2.188 (3) Å; Sn2—O201 2.188 (3) Å; Sn2—O206 2.169 (4) Å] are in the range of axial Sn—O distances (2.165 (4) and 2.434 (4) Å) observed in catena-trimethyltin(IV) methylphosphonate, [MePO3HSnMe3] (Diop et al., 2002), but are longer than the axial Sn—O distances [2.116 (2) Å and 2.132 (3) Å] observed in catena-(µ2-phenylphosphinato O, O')-chlorido-tin(II) (Adair et al., 2003). The geometry at the P sites is a distorted tetrahedron with bond angles ranging from 102.7 (3)° for O208—P207—C210 to 114.2 (2) for O201—P202—O204.

The stannate(IV) anions [(MePO3H)2SnPh3]- are linked by pairs of short O—H···O hydrogen bonds, involving the hydroxy group of the methyl hydrogenphosphate unit, and thus forming an infinite chain (Table 1, Fig. 2) along the b-direction. In the crystal, neighbouring chains are linked by N—H···O hydrogen bonds via the Bu2NH2+ cations, forming a supramolecular structure parallel to the ab plane.

Experimental

An ethanolic solution containing 0.30 g (1.20 mmol) of Bu2NH2MePO3H (obtained from an aqueous mixture of dibutylamine and MeP(O)(OH)2 in water in a 1:1 ratio) and triphenyltin(IV) chloride (SnPh3Cl) 2.25 g (0.66 mmol) was stirred at room temperature for more than one hour. After 96 h of slow evaporation of the solution, colourless crystals of the title compound (yield: 78%; m.p: 250°) suitable for X-ray structure determination were obtained within the remaining solvent. The powder obtained after complete solvent evaporation has the formula Bu2NH2Cl according to its infrared spectrum.

Refinement

H atoms were all located in a difference Fourier map, but those attached to C atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H bond lengths in the range 0.93–0.98 Å, N—H bond length 0.89 Å, O—H bond length 0.85 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

The large diplacement ellipsoids and deviating C—C distances of the dibutylammonium cations indicated slight displacement disorder, which, however could not be resolved in difference Fourier maps. The dibutylammonium cations were therefore regularized and refined with soft distance and angle restraints.

The crystal under investigation was found to be twinned by reticular merohedry with twin index 7 and twin fractions 0.5342 (7) and 0.4658 (7). The twin symmetry element is a twofold rotation axis along the reciprocal c* axis; the pseudo-orthorhombic lattice can be generated by a' = a, b' = b, c' = 7c - a.

Figures

Fig. 1.

Fig. 1.

The two pairs of molecular entities in the title compound with anisotropic displacement parameters drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

(C8H20N)[Sn(C6H5)3(CH4O3P)2] F(000) = 2768
Mr = 670.28 Dx = 1.374 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7455 reflections
a = 16.1963 (8) Å θ = 1.4–29.2°
b = 18.9088 (8) Å µ = 0.93 mm1
c = 21.1989 (11) Å T = 175 K
β = 93.220 (4)° Block, colourless
V = 6482.0 (5) Å3 0.30 × 0.25 × 0.10 mm
Z = 8

Data collection

Oxford Diffraction Gemini diffractometer 17225 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.085
ω scans θmax = 29.2°, θmin = 1.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) h = −20→22
Tmin = 0.961, Tmax = 1.000 k = −24→24
64843 measured reflections l = −28→27
26060 independent reflections

Refinement

Refinement on F Primary atom site location: charge-flipping
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.067 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 15.1 4.23 12.3 3.23
S = 0.99 (Δ/σ)max = 0.003
17225 reflections Δρmax = 1.28 e Å3
686 parameters Δρmin = −1.66 e Å3
9 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.55169 (2) 0.19275 (2) 0.195941 (16) 0.0285
O101 0.5156 (3) 0.3004 (2) 0.21763 (18) 0.0413
P102 0.49515 (8) 0.37108 (7) 0.18772 (7) 0.0296
O103 0.4023 (2) 0.3900 (2) 0.1956 (2) 0.0506
H1031 0.3906 0.4158 0.2267 0.0600*
O104 0.5479 (2) 0.4314 (2) 0.2139 (2) 0.0440
C105 0.5019 (5) 0.3644 (4) 0.1041 (3) 0.0534
H1051 0.4684 0.3265 0.0876 0.0664*
H1052 0.4828 0.4075 0.0840 0.0664*
H1053 0.5576 0.3566 0.0936 0.0664*
O106 0.5926 (2) 0.08826 (17) 0.16616 (18) 0.0316
P107 0.57266 (8) 0.01052 (7) 0.16887 (7) 0.0296
O108 0.4833 (2) 0.0013 (2) 0.1908 (2) 0.0506
H1081 0.4726 −0.0226 0.2233 0.0601*
O109 0.6335 (2) −0.03205 (18) 0.20970 (19) 0.0335
C110 0.5695 (4) −0.0236 (4) 0.0899 (3) 0.0528
H1101 0.5316 0.0027 0.0631 0.1230*
H1102 0.5532 −0.0721 0.0893 0.1230*
H1103 0.6233 −0.0204 0.0731 0.1230*
C111 0.4357 (3) 0.1784 (3) 0.1454 (3) 0.0360
C112 0.3649 (4) 0.2063 (3) 0.1685 (3) 0.0410
H1121 0.3669 0.2318 0.2059 0.0493*
C113 0.2880 (3) 0.1965 (4) 0.1360 (4) 0.0557
H1131 0.2405 0.2156 0.1530 0.0669*
C114 0.2816 (5) 0.1595 (4) 0.0803 (4) 0.0654
H1141 0.2309 0.1530 0.0589 0.0784*
C115 0.3523 (4) 0.1322 (4) 0.0560 (4) 0.0552
H1151 0.3485 0.1083 0.0178 0.0671*
C116 0.4285 (4) 0.1411 (3) 0.0886 (3) 0.0433
H1161 0.4763 0.1224 0.0724 0.0510*
C117 0.5635 (3) 0.1714 (3) 0.2950 (3) 0.0332
C118 0.5865 (3) 0.1055 (3) 0.3186 (3) 0.0399
H1181 0.5968 0.0690 0.2910 0.0475*
C119 0.5950 (4) 0.0922 (4) 0.3827 (3) 0.0500
H1191 0.6097 0.0472 0.3970 0.0600*
C120 0.5810 (5) 0.1433 (4) 0.4247 (3) 0.0580
H1201 0.5858 0.1340 0.4680 0.0721*
C121 0.5580 (5) 0.2094 (5) 0.4041 (3) 0.0633
H1211 0.5471 0.2444 0.4337 0.0761*
C122 0.5503 (5) 0.2239 (3) 0.3389 (3) 0.0527
H1221 0.5360 0.2685 0.3252 0.0635*
C123 0.6561 (3) 0.2318 (3) 0.1505 (3) 0.0328
C124 0.7102 (4) 0.2768 (3) 0.1807 (3) 0.0492
H1241 0.7007 0.2909 0.2218 0.0591*
C125 0.7801 (4) 0.3024 (4) 0.1519 (4) 0.0679
H1251 0.8163 0.3331 0.1729 0.0821*
C126 0.7936 (5) 0.2831 (4) 0.0917 (4) 0.0686
H1261 0.8414 0.2987 0.0728 0.0820*
C127 0.7387 (5) 0.2393 (4) 0.0596 (4) 0.0666
H1271 0.7466 0.2268 0.0181 0.0781*
C128 0.6701 (4) 0.2132 (4) 0.0889 (3) 0.0501
H1281 0.6333 0.1824 0.0671 0.0591*
Sn2 1.06366 (2) 0.19358 (2) 0.300170 (16) 0.0299
O201 1.1082 (2) 0.09045 (18) 0.33422 (18) 0.0329
P202 1.08457 (8) 0.01320 (7) 0.33239 (7) 0.0311
O203 0.9928 (2) 0.0086 (3) 0.3079 (3) 0.0602
H2031 0.9764 −0.0176 0.2771 0.0723*
O204 1.1394 (2) −0.03227 (18) 0.29425 (19) 0.0328
C205 1.0875 (5) −0.0203 (4) 0.4117 (4) 0.0628
H2051 1.0734 −0.0692 0.4117 0.0705*
H2052 1.0505 0.0052 0.4364 0.0705*
H2053 1.1426 −0.0154 0.4310 0.0705*
O206 1.0252 (3) 0.3003 (2) 0.27527 (19) 0.0446
P207 1.00599 (8) 0.37021 (7) 0.30592 (7) 0.0324
O208 0.9118 (2) 0.3870 (3) 0.2967 (3) 0.0565
H2081 0.8950 0.4139 0.2665 0.0666*
O209 1.0549 (2) 0.4318 (2) 0.2817 (2) 0.0404
C210 1.0210 (5) 0.3624 (4) 0.3897 (3) 0.0559
H2101 0.9901 0.3235 0.4048 0.0675*
H2102 1.0781 0.3551 0.4017 0.0675*
H2103 1.0031 0.4046 0.4098 0.0675*
C211 0.9552 (4) 0.1822 (3) 0.3512 (3) 0.0373
C212 0.8793 (3) 0.2069 (3) 0.3260 (3) 0.0379
H2121 0.8748 0.2289 0.2863 0.0451*
C213 0.8088 (4) 0.1984 (4) 0.3591 (4) 0.0554
H2131 0.7593 0.2165 0.3424 0.0659*
C214 0.8108 (5) 0.1656 (4) 0.4158 (4) 0.0629
H2141 0.7629 0.1588 0.4365 0.0745*
C215 0.8862 (5) 0.1414 (4) 0.4430 (4) 0.0648
H2151 0.8881 0.1205 0.4829 0.0768*
C216 0.9571 (5) 0.1492 (3) 0.4095 (3) 0.0501
H2161 1.0075 0.1329 0.4269 0.0593*
C217 1.1762 (3) 0.2337 (3) 0.3424 (3) 0.0338
C218 1.2274 (4) 0.2774 (4) 0.3092 (4) 0.0561
H2181 1.2114 0.2898 0.2682 0.0670*
C219 1.3013 (5) 0.3022 (5) 0.3362 (5) 0.0772
H2191 1.3342 0.3318 0.3134 0.0910*
C220 1.3251 (5) 0.2840 (4) 0.3964 (4) 0.0646
H2201 1.3753 0.3008 0.4135 0.0769*
C221 1.2774 (5) 0.2419 (4) 0.4310 (4) 0.0656
H2211 1.2948 0.2297 0.4724 0.0781*
C222 1.2018 (4) 0.2164 (4) 0.4036 (3) 0.0508
H2221 1.1688 0.1878 0.4277 0.0594*
C223 1.0585 (3) 0.1674 (3) 0.2021 (3) 0.0353
C224 1.0816 (4) 0.1013 (3) 0.1805 (3) 0.0437
H2241 1.0993 0.0676 0.2094 0.0522*
C225 1.0786 (4) 0.0854 (4) 0.1166 (3) 0.0519
H2251 1.0967 0.0416 0.1033 0.0613*
C226 1.0495 (4) 0.1335 (4) 0.0728 (3) 0.0592
H2261 1.0446 0.1227 0.0298 0.0711*
C227 1.0266 (6) 0.1998 (5) 0.0932 (3) 0.0733
H2271 1.0096 0.2344 0.0636 0.0861*
C228 1.0293 (5) 0.2172 (4) 0.1571 (3) 0.0586
H2281 1.0113 0.2609 0.1702 0.0690*
N10 0.7984 (3) 0.0021 (3) 0.2374 (2) 0.0397
H101 0.8398 −0.0259 0.2269 0.0581*
H102 0.7505 −0.0165 0.2220 0.0580*
C11 0.8098 (4) 0.0735 (4) 0.2092 (4) 0.0590
H111 0.8509 0.0989 0.2359 0.0722*
H112 0.7582 0.0986 0.2090 0.0721*
C12 0.8419 (7) 0.0707 (5) 0.1451 (4) 0.1010
H121 0.8985 0.0577 0.1505 0.1239*
H122 0.8378 0.1177 0.1294 0.1239*
C13 0.8007 (6) 0.0261 (6) 0.0961 (4) 0.1139
H131 0.8020 −0.0213 0.1110 0.1425*
H132 0.7449 0.0402 0.0875 0.1425*
C14 0.8478 (6) 0.0293 (6) 0.0368 (4) 0.1091
H141 0.8216 0.0007 0.0047 0.1306*
H142 0.9025 0.0127 0.0461 0.1306*
H143 0.8496 0.0769 0.0227 0.1306*
C15 0.7993 (4) 0.0052 (5) 0.3066 (3) 0.0659
H151 0.7482 0.0280 0.3176 0.0786*
H152 0.8468 0.0330 0.3227 0.0791*
C16 0.8015 (4) −0.0687 (5) 0.3348 (3) 0.0731
H161 0.7513 −0.0929 0.3200 0.0892*
H162 0.8479 −0.0928 0.3187 0.0889*
C17 0.8065 (9) −0.0572 (6) 0.4059 (4) 0.1531
H171 0.8527 −0.0278 0.4170 0.1878*
H172 0.7574 −0.0350 0.4182 0.1878*
C18 0.8169 (12) −0.1248 (8) 0.4378 (5) 0.2082
H181 0.8202 −0.1166 0.4821 0.2303*
H182 0.8661 −0.1472 0.4259 0.2303*
H183 0.7708 −0.1544 0.4271 0.2303*
N20 0.6997 (2) 0.4947 (2) 0.2381 (2) 0.0309
H201 0.7428 0.4776 0.2187 0.0458*
H202 0.6542 0.4700 0.2261 0.0463*
C21 0.6841 (4) 0.5698 (3) 0.2174 (3) 0.0445
H211 0.7364 0.5941 0.2176 0.0532*
H212 0.6498 0.5929 0.2471 0.0532*
C22 0.6400 (4) 0.5728 (4) 0.1526 (3) 0.0603
H221 0.6343 0.6227 0.1417 0.0720*
H222 0.5852 0.5519 0.1544 0.0721*
C23 0.6829 (3) 0.5372 (4) 0.1006 (3) 0.0628
H231 0.6902 0.4872 0.1105 0.0753*
H232 0.7364 0.5591 0.0965 0.0751*
C24 0.6310 (5) 0.5448 (5) 0.0389 (3) 0.0877
H241 0.6585 0.5199 0.0063 0.1319*
H242 0.6246 0.5938 0.0271 0.1320*
H243 0.5770 0.5248 0.0428 0.1321*
C25 0.7138 (3) 0.4836 (3) 0.3079 (3) 0.0403
H251 0.7670 0.5050 0.3207 0.0479*
H252 0.6708 0.5084 0.3290 0.0483*
C26 0.7143 (4) 0.4058 (3) 0.3241 (3) 0.0421
H261 0.6609 0.3854 0.3110 0.0499*
H262 0.7570 0.3824 0.3010 0.0505*
C27 0.7300 (4) 0.3921 (4) 0.3944 (3) 0.0555
H271 0.7379 0.3418 0.4009 0.0672*
H272 0.7801 0.4179 0.4089 0.0672*
C28 0.6607 (5) 0.4144 (5) 0.4341 (4) 0.0701
H281 0.6113 0.3892 0.4209 0.1071*
H282 0.6730 0.4054 0.4786 0.1069*
H283 0.6516 0.4642 0.4276 0.1068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03063 (19) 0.02368 (17) 0.0318 (2) 0.00151 (15) 0.00695 (13) 0.00110 (15)
O101 0.057 (2) 0.0268 (18) 0.041 (2) 0.0067 (18) 0.0122 (17) −0.0018 (17)
P102 0.0247 (7) 0.0243 (6) 0.0398 (7) 0.0022 (5) 0.0031 (5) −0.0042 (5)
O103 0.0185 (19) 0.065 (3) 0.068 (3) 0.0100 (17) −0.0051 (18) −0.036 (2)
O104 0.040 (2) 0.036 (2) 0.057 (3) 0.0020 (17) 0.0118 (19) −0.0128 (19)
C105 0.072 (4) 0.052 (4) 0.035 (3) 0.010 (3) 0.002 (3) 0.000 (3)
O106 0.0303 (17) 0.0197 (16) 0.045 (2) 0.0014 (14) 0.0067 (15) 0.0019 (15)
P107 0.0235 (6) 0.0232 (6) 0.0423 (8) 0.0003 (5) 0.0040 (5) 0.0047 (5)
O108 0.028 (2) 0.061 (3) 0.063 (3) 0.0038 (19) 0.0038 (19) 0.034 (2)
O109 0.0215 (17) 0.0274 (18) 0.052 (2) 0.0011 (14) 0.0056 (16) 0.0038 (16)
C110 0.062 (4) 0.044 (4) 0.051 (4) 0.005 (3) −0.002 (3) −0.011 (3)
C111 0.034 (3) 0.028 (3) 0.046 (3) −0.001 (2) −0.001 (2) 0.009 (2)
C112 0.036 (3) 0.029 (3) 0.059 (4) −0.001 (2) 0.012 (3) 0.004 (2)
C113 0.025 (3) 0.064 (4) 0.078 (5) 0.003 (3) 0.000 (3) 0.017 (4)
C114 0.054 (4) 0.064 (5) 0.075 (6) −0.014 (4) −0.021 (4) 0.019 (4)
C115 0.050 (4) 0.056 (4) 0.058 (4) 0.000 (3) −0.011 (3) −0.003 (3)
C116 0.046 (3) 0.039 (3) 0.044 (3) 0.006 (3) 0.001 (3) 0.006 (3)
C117 0.027 (3) 0.038 (3) 0.035 (3) −0.005 (2) 0.003 (2) −0.001 (2)
C118 0.037 (3) 0.040 (3) 0.043 (3) 0.004 (2) 0.003 (2) 0.002 (3)
C119 0.046 (4) 0.061 (4) 0.044 (4) 0.007 (3) 0.006 (3) 0.013 (3)
C120 0.062 (4) 0.080 (5) 0.033 (3) 0.007 (4) 0.003 (3) 0.010 (3)
C121 0.067 (4) 0.083 (6) 0.040 (4) 0.014 (4) 0.002 (3) −0.009 (3)
C122 0.076 (5) 0.040 (3) 0.043 (4) 0.007 (3) 0.005 (3) 0.003 (3)
C123 0.039 (3) 0.019 (2) 0.040 (3) 0.004 (2) 0.006 (2) 0.006 (2)
C124 0.053 (4) 0.042 (3) 0.053 (4) −0.014 (3) 0.011 (3) −0.013 (3)
C125 0.057 (4) 0.066 (5) 0.082 (5) −0.032 (4) 0.014 (4) −0.015 (4)
C126 0.065 (4) 0.049 (4) 0.096 (6) −0.027 (3) 0.042 (4) 0.002 (4)
C127 0.081 (5) 0.065 (5) 0.058 (5) −0.018 (4) 0.039 (4) −0.008 (4)
C128 0.057 (4) 0.054 (4) 0.040 (3) −0.020 (3) 0.009 (3) −0.008 (3)
Sn2 0.03160 (19) 0.02667 (18) 0.0314 (2) 0.00085 (15) 0.00178 (13) −0.00105 (16)
O201 0.0310 (18) 0.0242 (17) 0.043 (2) 0.0006 (14) −0.0008 (15) −0.0001 (15)
P202 0.0265 (6) 0.0241 (6) 0.0433 (8) −0.0018 (5) 0.0064 (6) −0.0043 (5)
O203 0.028 (2) 0.066 (3) 0.087 (4) −0.001 (2) 0.007 (2) −0.051 (3)
O204 0.0223 (17) 0.0257 (18) 0.050 (2) −0.0015 (14) 0.0027 (16) −0.0027 (16)
C205 0.091 (6) 0.038 (3) 0.061 (5) 0.011 (4) 0.023 (4) 0.011 (3)
O206 0.063 (3) 0.0279 (19) 0.043 (2) 0.0094 (19) 0.0026 (19) 0.0039 (17)
P207 0.0268 (7) 0.0261 (6) 0.0444 (8) 0.0026 (5) 0.0034 (6) 0.0061 (6)
O208 0.029 (2) 0.059 (3) 0.083 (4) 0.0078 (19) 0.009 (2) 0.034 (3)
O209 0.034 (2) 0.033 (2) 0.053 (3) −0.0015 (16) −0.0044 (17) 0.0153 (18)
C210 0.080 (5) 0.046 (4) 0.041 (3) 0.000 (3) 0.005 (3) −0.005 (3)
C211 0.045 (3) 0.019 (3) 0.049 (3) 0.001 (2) 0.012 (3) −0.006 (2)
C212 0.031 (3) 0.026 (3) 0.057 (4) 0.003 (2) 0.005 (2) −0.006 (2)
C213 0.033 (3) 0.043 (4) 0.090 (6) 0.001 (3) 0.005 (3) −0.016 (4)
C214 0.053 (4) 0.054 (4) 0.087 (6) −0.010 (3) 0.044 (4) −0.021 (4)
C215 0.089 (6) 0.055 (4) 0.055 (4) 0.002 (4) 0.037 (4) −0.004 (3)
C216 0.058 (4) 0.044 (3) 0.050 (4) 0.014 (3) 0.016 (3) −0.002 (3)
C217 0.041 (3) 0.018 (2) 0.043 (3) −0.004 (2) 0.008 (2) −0.003 (2)
C218 0.060 (4) 0.050 (4) 0.058 (4) −0.021 (3) 0.005 (3) 0.005 (3)
C219 0.064 (5) 0.067 (5) 0.102 (7) −0.031 (4) 0.012 (4) −0.002 (5)
C220 0.054 (4) 0.042 (4) 0.096 (6) −0.018 (3) −0.014 (4) −0.016 (4)
C221 0.074 (5) 0.056 (4) 0.063 (5) −0.013 (4) −0.019 (4) −0.009 (4)
C222 0.048 (3) 0.049 (4) 0.054 (4) −0.013 (3) −0.007 (3) 0.001 (3)
C223 0.024 (3) 0.049 (3) 0.032 (3) 0.001 (2) −0.005 (2) 0.003 (2)
C224 0.047 (3) 0.045 (3) 0.039 (3) 0.006 (3) 0.008 (3) −0.002 (3)
C225 0.047 (4) 0.064 (4) 0.045 (4) 0.007 (3) 0.006 (3) −0.013 (3)
C226 0.061 (4) 0.084 (5) 0.032 (3) 0.009 (4) 0.000 (3) −0.010 (3)
C227 0.105 (6) 0.075 (5) 0.039 (4) 0.021 (5) −0.002 (4) 0.012 (4)
C228 0.083 (5) 0.055 (4) 0.037 (3) 0.018 (4) 0.000 (3) 0.000 (3)
N10 0.022 (2) 0.050 (3) 0.047 (3) 0.0011 (19) 0.0025 (19) −0.010 (2)
C11 0.037 (3) 0.041 (4) 0.098 (6) −0.002 (3) −0.005 (3) −0.009 (4)
C12 0.146 (10) 0.053 (5) 0.105 (9) −0.014 (6) 0.022 (7) 0.025 (5)
C13 0.158 (11) 0.091 (8) 0.092 (8) −0.032 (8) 0.001 (8) 0.030 (6)
C14 0.110 (8) 0.144 (10) 0.075 (7) 0.041 (7) 0.015 (6) 0.034 (7)
C15 0.032 (3) 0.121 (7) 0.045 (4) 0.028 (4) 0.004 (3) −0.021 (4)
C16 0.033 (3) 0.135 (8) 0.052 (4) 0.011 (4) 0.002 (3) 0.021 (5)
C17 0.186 (14) 0.205 (16) 0.073 (8) 0.077 (12) 0.053 (8) 0.040 (9)
C18 0.29 (3) 0.23 (2) 0.112 (13) 0.098 (19) 0.069 (14) 0.054 (13)
N20 0.0214 (19) 0.032 (2) 0.039 (3) −0.0033 (16) 0.0043 (17) −0.0015 (18)
C21 0.036 (3) 0.034 (3) 0.065 (4) −0.004 (2) 0.010 (3) −0.001 (3)
C22 0.055 (4) 0.052 (4) 0.075 (5) 0.008 (3) 0.011 (4) 0.017 (4)
C23 0.050 (4) 0.082 (5) 0.056 (5) −0.013 (4) −0.003 (3) 0.018 (4)
C24 0.081 (6) 0.115 (8) 0.064 (6) −0.023 (6) −0.017 (4) 0.018 (5)
C25 0.031 (3) 0.052 (3) 0.038 (3) −0.005 (2) 0.001 (2) −0.005 (3)
C26 0.039 (3) 0.042 (3) 0.045 (3) −0.003 (2) 0.007 (2) −0.004 (3)
C27 0.053 (4) 0.066 (4) 0.047 (4) 0.010 (3) −0.004 (3) 0.004 (3)
C28 0.082 (5) 0.081 (5) 0.048 (4) 0.018 (4) 0.015 (4) 0.008 (4)

Geometric parameters (Å, º)

Sn1—O101 2.175 (4) C214—C215 1.398 (12)
Sn1—O106 2.188 (3) C215—H2151 0.933
Sn1—C111 2.128 (6) C215—C216 1.391 (10)
Sn1—C117 2.137 (6) C216—H2161 0.930
Sn1—C123 2.125 (5) C217—C218 1.390 (8)
Sn2—O201 2.188 (3) C217—C222 1.378 (9)
Sn2—O206 2.169 (4) C218—H2181 0.923
Sn2—C211 2.125 (6) C218—C219 1.380 (10)
Sn2—C217 2.126 (6) C219—H2191 0.926
Sn2—C223 2.134 (6) C219—C220 1.357 (12)
O101—P102 1.507 (4) C220—H2201 0.927
P102—O103 1.563 (4) C220—C221 1.353 (11)
P102—O104 1.511 (4) C221—H2211 0.935
P102—C105 1.787 (6) C221—C222 1.410 (9)
O103—H1031 0.850 C222—H2221 0.933
C105—H1051 0.953 C223—C224 1.388 (8)
C105—H1052 0.962 C223—C228 1.405 (9)
C105—H1053 0.953 C224—H2241 0.920
O106—P107 1.507 (3) C224—C225 1.384 (9)
P107—O108 1.554 (4) C225—H2251 0.929
P107—O109 1.508 (4) C225—C226 1.365 (10)
P107—C110 1.793 (7) C226—H2261 0.933
O108—H1081 0.850 C226—C227 1.384 (11)
C110—H1101 0.951 C227—H2271 0.937
C110—H1102 0.954 C227—C228 1.393 (10)
C110—H1103 0.963 C228—H2281 0.924
C111—C112 1.376 (8) N10—H101 0.893
C111—C116 1.395 (9) N10—H102 0.896
C112—H1121 0.927 N10—C11 1.493 (9)
C112—C113 1.401 (9) N10—C15 1.466 (8)
C113—H1131 0.938 C11—H111 0.975
C113—C114 1.373 (11) C11—H112 0.960
C114—H1141 0.924 C11—C12 1.483 (12)
C114—C115 1.381 (11) C12—H121 0.950
C115—H1151 0.926 C12—H122 0.950
C115—C116 1.390 (9) C12—C13 1.469 (8)
C116—H1161 0.933 C13—H131 0.950
C117—C118 1.386 (8) C13—H132 0.950
C117—C122 1.386 (8) C13—C14 1.508 (8)
C118—H1181 0.926 C14—H141 0.950
C118—C119 1.380 (9) C14—H142 0.950
C119—H1191 0.930 C14—H143 0.950
C119—C120 1.342 (10) C15—H151 0.973
C120—H1201 0.933 C15—H152 0.977
C120—C121 1.368 (11) C15—C16 1.520 (12)
C121—H1211 0.936 C16—H161 0.969
C121—C122 1.408 (9) C16—H162 0.958
C122—H1221 0.917 C16—C17 1.520 (8)
C123—C124 1.357 (8) C17—H171 0.950
C123—C128 1.383 (8) C17—H172 0.950
C124—H1241 0.930 C17—C18 1.453 (9)
C124—C125 1.403 (9) C18—H181 0.950
C125—H1251 0.922 C18—H182 0.950
C125—C126 1.356 (11) C18—H183 0.950
C126—H1261 0.938 N20—H201 0.892
C126—C127 1.368 (11) N20—H202 0.897
C127—H1271 0.928 N20—C21 1.504 (7)
C127—C128 1.392 (9) N20—C25 1.500 (7)
C128—H1281 0.937 C21—H211 0.964
O201—P202 1.510 (4) C21—H212 0.968
P202—O203 1.549 (4) C21—C22 1.513 (9)
P202—O204 1.504 (4) C22—H221 0.974
P202—C205 1.795 (7) C22—H222 0.976
O203—H2031 0.850 C22—C23 1.495 (7)
C205—H2051 0.951 C23—H231 0.975
C205—H2052 0.949 C23—H232 0.969
C205—H2053 0.965 C23—C24 1.521 (7)
O206—P207 1.513 (4) C24—H241 0.965
P207—O208 1.560 (4) C24—H242 0.965
P207—O209 1.515 (4) C24—H243 0.960
P207—C210 1.785 (7) C25—H251 0.976
O208—H2081 0.850 C25—H252 0.968
C210—H2101 0.956 C25—C26 1.510 (9)
C210—H2102 0.955 C26—H261 0.973
C210—H2103 0.959 C26—H262 0.976
C211—C212 1.393 (8) C26—C27 1.520 (9)
C211—C216 1.384 (9) C27—H271 0.969
C212—H2121 0.939 C27—H272 0.981
C212—C213 1.383 (9) C27—C28 1.501 (10)
C213—H2131 0.923 C28—H281 0.960
C213—C214 1.352 (11) C28—H282 0.967
C214—H2141 0.920 C28—H283 0.961
O101—Sn1—O106 174.71 (14) C215—C216—H2161 119.7
O101—Sn1—C111 89.15 (19) C211—C216—H2161 118.5
O106—Sn1—C111 90.75 (18) Sn2—C217—C218 121.3 (5)
O101—Sn1—C117 88.80 (18) Sn2—C217—C222 121.2 (4)
O106—Sn1—C117 95.83 (18) C218—C217—C222 117.5 (6)
C111—Sn1—C117 119.9 (2) C217—C218—H2181 119.0
O101—Sn1—C123 90.03 (17) C217—C218—C219 121.3 (7)
O106—Sn1—C123 85.50 (16) H2181—C218—C219 119.7
C111—Sn1—C123 121.2 (2) C218—C219—H2191 120.0
C117—Sn1—C123 118.8 (2) C218—C219—C220 119.8 (7)
Sn1—O101—P102 142.8 (2) H2191—C219—C220 120.2
O101—P102—O103 110.3 (3) C219—C220—H2201 118.5
O101—P102—O104 114.0 (2) C219—C220—C221 121.3 (7)
O103—P102—O104 108.4 (2) H2201—C220—C221 120.2
O101—P102—C105 109.3 (3) C220—C221—H2211 120.2
O103—P102—C105 103.6 (3) C220—C221—C222 119.1 (8)
O104—P102—C105 110.7 (3) H2211—C221—C222 120.7
P102—O103—H1031 118.3 C221—C222—C217 121.0 (6)
P102—C105—H1051 110.6 C221—C222—H2221 119.0
P102—C105—H1052 110.0 C217—C222—H2221 120.1
H1051—C105—H1052 108.3 Sn2—C223—C224 122.3 (4)
P102—C105—H1053 110.7 Sn2—C223—C228 119.9 (5)
H1051—C105—H1053 109.0 C224—C223—C228 117.8 (6)
H1052—C105—H1053 108.3 C223—C224—H2241 118.9
Sn1—O106—P107 143.2 (2) C223—C224—C225 121.6 (6)
O106—P107—O108 109.0 (2) H2241—C224—C225 119.5
O106—P107—O109 114.1 (2) C224—C225—H2251 119.8
O108—P107—O109 111.0 (2) C224—C225—C226 120.8 (6)
O106—P107—C110 108.1 (3) H2251—C225—C226 119.4
O108—P107—C110 105.1 (3) C225—C226—H2261 121.8
O109—P107—C110 109.1 (3) C225—C226—C227 118.7 (6)
P107—O108—H1081 122.5 H2261—C226—C227 119.5
P107—C110—H1101 110.7 C226—C227—H2271 119.9
P107—C110—H1102 110.6 C226—C227—C228 121.6 (7)
H1101—C110—H1102 109.1 H2271—C227—C228 118.6
P107—C110—H1103 110.1 C223—C228—C227 119.5 (7)
H1101—C110—H1103 108.3 C223—C228—H2281 119.7
H1102—C110—H1103 108.1 C227—C228—H2281 120.7
Sn1—C111—C112 120.1 (5) H101—N10—H102 108.9
Sn1—C111—C116 121.8 (4) H101—N10—C11 108.9
C112—C111—C116 118.0 (5) H102—N10—C11 109.5
C111—C112—H1121 120.9 H101—N10—C15 107.9
C111—C112—C113 120.7 (6) H102—N10—C15 109.9
H1121—C112—C113 118.4 C11—N10—C15 111.8 (6)
C112—C113—H1131 119.1 N10—C11—H111 107.9
C112—C113—C114 120.8 (6) N10—C11—H112 108.6
H1131—C113—C114 120.1 H111—C11—H112 108.9
C113—C114—H1141 120.8 N10—C11—C12 113.2 (6)
C113—C114—C115 119.2 (7) H111—C11—C12 106.7
H1141—C114—C115 120.0 H112—C11—C12 111.3
C114—C115—H1151 119.5 C11—C12—H121 106.4
C114—C115—C116 120.1 (7) C11—C12—H122 105.5
H1151—C115—C116 120.4 H121—C12—H122 109.5
C111—C116—C115 121.2 (6) C11—C12—C13 119.9 (7)
C111—C116—H1161 118.5 H121—C12—C13 109.5
C115—C116—H1161 120.3 H122—C12—C13 105.7
Sn1—C117—C118 122.1 (4) C12—C13—H131 107.9
Sn1—C117—C122 121.1 (4) C12—C13—H132 111.4
C118—C117—C122 116.7 (5) H131—C13—H132 109.5
C117—C118—H1181 119.7 C12—C13—C14 109.50 (2)
C117—C118—C119 122.0 (6) H131—C13—C14 108.1
H1181—C118—C119 118.3 H132—C13—C14 110.4
C118—C119—H1191 119.8 C13—C14—H141 110.3
C118—C119—C120 120.7 (6) C13—C14—H142 109.0
H1191—C119—C120 119.5 H141—C14—H142 109.5
C119—C120—H1201 120.6 C13—C14—H143 109.1
C119—C120—C121 119.9 (6) H141—C14—H143 109.5
H1201—C120—C121 119.5 H142—C14—H143 109.5
C120—C121—H1211 119.5 N10—C15—H151 107.3
C120—C121—C122 119.9 (7) N10—C15—H152 109.6
H1211—C121—C122 120.6 H151—C15—H152 109.9
C121—C122—C117 120.7 (6) N10—C15—C16 110.9 (6)
C121—C122—H1221 120.0 H151—C15—C16 108.3
C117—C122—H1221 119.3 H152—C15—C16 110.9
Sn1—C123—C124 120.8 (4) C15—C16—H161 107.8
Sn1—C123—C128 121.1 (4) C15—C16—H162 107.4
C124—C123—C128 118.0 (5) H161—C16—H162 108.7
C123—C124—H1241 119.0 C15—C16—C17 104.9 (7)
C123—C124—C125 121.7 (6) H161—C16—C17 112.7
H1241—C124—C125 119.3 H162—C16—C17 114.9
C124—C125—H1251 120.8 C16—C17—H171 109.2
C124—C125—C126 119.6 (7) C16—C17—H172 109.7
H1251—C125—C126 119.6 H171—C17—H172 109.5
C125—C126—H1261 119.8 C16—C17—C18 109.50 (2)
C125—C126—C127 119.7 (6) H171—C17—C18 109.3
H1261—C126—C127 120.5 H172—C17—C18 109.7
C126—C127—H1271 120.4 C17—C18—H181 108.4
C126—C127—C128 120.4 (7) C17—C18—H182 110.2
H1271—C127—C128 119.2 H181—C18—H182 109.5
C127—C128—C123 120.5 (6) C17—C18—H183 109.8
C127—C128—H1281 120.2 H181—C18—H183 109.5
C123—C128—H1281 119.3 H182—C18—H183 109.5
O201—Sn2—O206 174.15 (14) H201—N20—H202 109.4
O201—Sn2—C211 90.47 (17) H201—N20—C21 109.2
O206—Sn2—C211 89.08 (18) H202—N20—C21 106.7
O201—Sn2—C217 85.41 (16) H201—N20—C25 109.0
O206—Sn2—C217 89.91 (18) H202—N20—C25 106.6
C211—Sn2—C217 122.4 (2) C21—N20—C25 115.8 (5)
O201—Sn2—C223 96.22 (19) N20—C21—H211 108.4
O206—Sn2—C223 89.10 (19) N20—C21—H212 109.2
C211—Sn2—C223 119.0 (2) H211—C21—H212 108.5
C217—Sn2—C223 118.6 (2) N20—C21—C22 111.4 (5)
Sn2—O201—P202 140.8 (2) H211—C21—C22 110.8
O201—P202—O203 107.4 (2) H212—C21—C22 108.4
O201—P202—O204 114.2 (2) C21—C22—H221 106.6
O203—P202—O204 111.8 (2) C21—C22—H222 109.4
O201—P202—C205 108.9 (3) H221—C22—H222 109.1
O203—P202—C205 105.6 (3) C21—C22—C23 115.9 (5)
O204—P202—C205 108.4 (3) H221—C22—C23 107.7
P202—O203—H2031 122.9 H222—C22—C23 107.9
P202—C205—H2051 110.5 C22—C23—H231 109.5
P202—C205—H2052 110.7 C22—C23—H232 109.1
H2051—C205—H2052 109.5 H231—C23—H232 109.6
P202—C205—H2053 109.7 C22—C23—C24 109.50 (2)
H2051—C205—H2053 108.1 H231—C23—C24 109.4
H2052—C205—H2053 108.3 H232—C23—C24 109.6
Sn2—O206—P207 140.5 (2) C23—C24—H241 108.3
O206—P207—O208 110.3 (3) C23—C24—H242 111.1
O206—P207—O209 113.7 (2) H241—C24—H242 109.2
O208—P207—O209 109.1 (2) C23—C24—H243 110.6
O206—P207—C210 109.6 (3) H241—C24—H243 109.2
O208—P207—C210 102.7 (3) H242—C24—H243 108.4
O209—P207—C210 110.9 (3) N20—C25—H251 107.4
P207—O208—H2081 119.1 N20—C25—H252 108.2
P207—C210—H2101 110.7 H251—C25—H252 108.6
P207—C210—H2102 110.7 N20—C25—C26 111.0 (5)
H2101—C210—H2102 108.5 H251—C25—C26 110.3
P207—C210—H2103 110.3 H252—C25—C26 111.2
H2101—C210—H2103 108.3 C25—C26—H261 109.2
H2102—C210—H2103 108.3 C25—C26—H262 108.7
Sn2—C211—C212 120.5 (4) H261—C26—H262 108.7
Sn2—C211—C216 121.6 (5) C25—C26—C27 112.8 (5)
C212—C211—C216 117.9 (6) H261—C26—C27 108.0
C211—C212—H2121 121.0 H262—C26—C27 109.4
C211—C212—C213 120.2 (6) C26—C27—H271 108.6
H2121—C212—C213 118.8 C26—C27—H272 108.2
C212—C213—H2131 119.1 H271—C27—H272 110.1
C212—C213—C214 121.7 (6) C26—C27—C28 114.4 (6)
H2131—C213—C214 119.2 H271—C27—C28 107.1
C213—C214—H2141 120.6 H272—C27—C28 108.4
C213—C214—C215 119.5 (6) C27—C28—H281 109.6
H2141—C214—C215 119.9 C27—C28—H282 112.2
C214—C215—H2151 119.8 H281—C28—H282 108.6
C214—C215—C216 118.8 (7) C27—C28—H283 108.0
H2151—C215—C216 121.4 H281—C28—H283 109.1
C215—C216—C211 121.8 (7) H282—C28—H283 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O103—H1031···O109i 0.85 1.73 2.582 (10) 180 (1)
O108—H1081···O104ii 0.85 1.64 2.490 (10) 180 (1)
C122—H1221···O101 0.92 2.36 2.976 (10) 124 (1)
O203—H2031···O209iii 0.85 1.63 2.478 (10) 180 (1)
O208—H2081···O204iv 0.85 1.71 2.561 (10) 180 (1)
C228—H2281···O206 0.92 2.35 2.961 (10) 124 (1)
N10—H101···O209iii 0.89 1.90 2.772 (10) 165 (1)
N10—H102···O109 0.90 1.92 2.777 (10) 160 (1)
C15—H152···O203 0.98 2.45 3.134 (10) 127 (1)
C16—H161···O103ii 0.97 2.51 3.418 (10) 156 (1)
N20—H201···O204iv 0.89 1.95 2.780 (10) 154 (1)
N20—H202···O104 0.90 1.88 2.756 (10) 167 (1)
C25—H252···O108i 0.97 2.51 3.212 (10) 129 (1)
C26—H262···O208 0.98 2.52 3.302 (10) 138 (1)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2676).

References

  1. Adair, B. A., Neeraj, S. & Cheetham, A. K. (2003). Chem. Mater. 15, 1518–1529.
  2. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Chunlin, M., Mingqing, Y., Rufen, Z. & Lingyun, D. (2008). Inorg. Chim. Acta, 361, 2979–2984.
  5. Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
  6. Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry. Chichester: Wiley.
  7. Diop, C. A. K., Bassene, S., Sidibe, M., Sarr-Diasse, A., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683–689.
  8. Diop, T., Diop, L., Kociok-Köhn, G., Molloy, K. C. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m1674–m1675. [DOI] [PMC free article] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Gielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.
  11. Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3–4.
  12. Molloy, K. C., Purcell, T. G., Quill, K. & Nowell, I. W. (1984). J. Organomet. Chem. 267, 237–247.
  13. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  14. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials New York: Science Springer-Verlag.
  15. Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Main Group Met. Chem. 34, 127–130.
  16. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812038445/wm2676sup1.cif

e-68-m1284-sup1.cif (40.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038445/wm2676Isup2.hkl

e-68-m1284-Isup2.hkl (1.6MB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES