Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 22;68(Pt 10):m1286–m1287. doi: 10.1107/S1600536812038895

Poly[diaqua­[μ-1,4-bis­(1H-imidazol-1-yl)benzene-κ2 N 3:N 3′](μ-fumarato-κ2 O 1:O 4)nickel(II)]

Chang-Xin Bian a, Xiao-Qiang Yao a, Yu-Min Song a,*
PMCID: PMC3470161  PMID: 23125605

Abstract

In the title compound, [Ni(C4H2O4)(C12H10N4)(H2O)2]n, the NiII ion has a distorted octa­hedral coordination geometry. The asymmetric unit is composed of an Ni2+ ion, located on a twofold rotation axis, one half of a 1,4-bis­(1H-imidazol-1-yl)benzene (BIMB) ligand and one half of a fumarte (fum2−) dianion, both ligands being located about inversion centers, and a coordinating water mol­ecule. The NiII ions are linked by two BIMB ligands and two fum2− dianions, forming a four-connected layered structure parallel to (010) with a 44-sql topology. Within each layer, there are rhombic grids with dimensions of ca 13.5 × 9.0 Å and approximate angles of 109 and 70°. The crystal packing features a two-dimensional → two-dimensional parallel/parallel interpenetration in which one undulating layer is catenated to another equivalent one, forming a new bilayer. Moreover, the entangled two-dimensional layers are connected by O—H⋯O and C—H⋯O hydrogen bonds, generating a three-dimensional structure.

Related literature  

For multi-dimensional coordination polymers and their applications, see: Batten & Robson (1998); Carlucci et al. (2003a ,b ); Moulton & Zaworotko (2001); Sun et al. (2006); Wu et al. (2011); Bu et al. (2004). For their potential applications in electron transfer and drug delivery, see: Harriman & Sauvage (1996); Raymo & Sauvage (1999). For the structures of some related compounds, see: Chen et al. (2010); Li et al. (2012); Bu et al. (2004).graphic file with name e-68-m1286-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C4H2O4)(C12H10N4)(H2O)2]

  • M r = 419.04

  • Orthorhombic, Inline graphic

  • a = 11.2806 (4) Å

  • b = 16.3703 (7) Å

  • c = 9.0253 (3) Å

  • V = 1666.67 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.20 mm

Data collection  

  • Bruke APEXII CCD area-dector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.768, T max = 0.794

  • 8512 measured reflections

  • 2108 independent reflections

  • 1827 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.093

  • S = 1.08

  • 2108 reflections

  • 123 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038895/su2481sup1.cif

e-68-m1286-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038895/su2481Isup2.hkl

e-68-m1286-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3Y⋯O2i 0.85 1.96 2.7033 (18) 146
O3—H3X⋯O2ii 0.85 2.03 2.8361 (18) 159
C3—H3⋯O2ii 0.93 2.49 3.360 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University) and the Ministry of Education of Gansu (No. 1101–05).

supplementary crystallographic information

Comment

Entanglement, one of the ubiquitous phenomena in nature, has received considerable attention due to their intrinsic aesthetic architectures (Bu et al., 2004; Carlucci et al., 2003a; Wu et al., 2011) and potential applications (Sun et al., 2006; Moulton & Zaworotko, 2001). Many structurally interesting entangled structures, such as polyrotaxane, polycatenation, polythreading, have been discussed in detail by (Batten et al., 1998; Carlucci et al., 2003b). Polycatenation as a type of interesting networks of entangled systems has attracted much attention for their potential application in energy of electron transfer and drug delivery (Harriman & Sauvage, 1996; Raymo & Sauvage, 1999). Herein, we report on the crystal structure of a NiII coordination polymer built from linear BIMB and fum2- ligands, which features a two-dimensional → two-dimensional parallel/parallel polycatenation network.

The asymmetric unit of the title compound contains half a NiII ion located on a two-fold rotation axis, half a fum2- dianion and half a BIMB ligand both located about inversion centers, and a coordinated water molecule. Each NiII ion is coordinated by two water molecules, two different carboxylate O atoms from two different fum2- dianions and by two N atoms from two different BIMB ligands, and has a distorted octahedral geometry (Fig. 1).

It is interesting to note that the maleic acid (hydrolysis product of maleic anhydride) is converted into fumaric acid on the self-assembly of the title compound. This is probably because trans-fumaric has a higher thermal stability than cis-maleic acid.

In the crystal, each NiII ion is connected by two BIMB ligands and two fum2- ligands to form an infinite two-dimensional puckered sheet with rhombic grids (Fig. 2). Within each layer, the rhombic grids have dimensions of ca. 13.5 Å × 9.0 Å with angles of of ca. 109.60 and 70.40° (defined by Ni···Ni distances and Ni···Ni···Ni angles). The large size of the grids in two adjacent layers allow a two-dimensional → two-dimensional parallel/parallel polycatenation to occur (Fig. 3). From a topological perspective, each NiII ion can be regarded as a four-connected node, thus this two-dimensional network can be assigned to the 44-sql topology.

Moreover, the entangled two-dimensional layers are further connected by O–H···O hydrogen bonds to generate a three-dimensional structure (Fig. 4).

The structure of a similar NiII coordination polymer assembled by BIMB ligand and adipic acid has been described by (Chen et al., 2010). However, compared with the title compound, the adipic acid is a longer spacer length and more flexible, and crystallizes in the lower symmetry triclinic space group P1 rather than orthorhombic space group Pbcn for the title compound with the short fumarate spacer.

Another relevant example reported by (Bu et al., 2004) is a ZnII coordination polymer (Li et al. 2012). Like the title complex, it is also built from BIMB and fum2- ligands. However, the difference in the metal center results in an interesting 5-fold interpenetrated three-dimensional framework based on a diamondoid topology.

In summary, we have synthesized a NiII coordination polymer by the hydrothermal reaction of Ni(NO3)2 with H2fum and BIMB ligands, which features a two-dimensional → two-dimensional parallel/parallel polycatenation network. On comparing with two relevant complexes based on the BIMB ligand, we found that the coordination geometry of the central metal ions and the flexibility of the auxiliary carboxylate ligands indeed have a significant effect on the architecture of the target complexes.

Experimental

A mixture of 1,4-Bis(1-imidazolyl)benzene (BIMB) (0.032 g, 0.15 mmol), maleic anydride (0.015 g, 0.15 mmol) and Ni(NO3)2 (0.045 g, 0.25 mmol) in N,N'-dimethylformamide (DMF) (4 ml) and H2O (2 ml) was placed in a Teflon-lined stainless steel vessel and heated at 363 K for 3 days. On cooling to room temperature green block-like single crystals suitable for X-ray diffraction were obtained [70% yield (based on BIMB ligand)]. Anal. Calcd for C16H16N4O6Ni: C, 45.86; H, 3.85; N, 13.37%. Found: C, 45.93; H, 3.87; N, 13.41%. Spectroscopic data for the title compound are given in the archived CIF.

Refinement

The water H atoms were located in a difference Fourier map and included as riding atoms, with O—H = 0.85 and Uiso(H) = 1.5Ueq(O). The C-bound H atoms were placed in calculated positions and treated as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) 1 – x, y, 0.5 – z; (ii) 1 – x, y, -0.5 – z; (iii) 2 – x, –y, –z].

Fig. 2.

Fig. 2.

A view of the two-dimensional undulated 44-sql layer of the title compound.

Fig. 3.

Fig. 3.

A view of the two-fold parallel polycatenation of the two-dimensional layers in the crystal structure of the title compound.

Fig. 4.

Fig. 4.

A view of the entangled two-dimensional layers that extended to a three-dimensional structure via O–H···O hydrogen bonds in the crystal structure of the title compound.

Crystal data

[Ni(C4H2O4)(C12H10N4)(H2O)2] F(000) = 864
Mr = 419.04 Dx = 1.670 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 4217 reflections
a = 11.2806 (4) Å θ = 2.5–28.4°
b = 16.3703 (7) Å µ = 1.21 mm1
c = 9.0253 (3) Å T = 296 K
V = 1666.67 (11) Å3 Block, green
Z = 4 0.23 × 0.22 × 0.20 mm

Data collection

Bruke APEXII CCD area-dector diffractometer 2108 independent reflections
Radiation source: fine-focus sealed tube 1827 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
CCD rotation images, thin slices scans θmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→15
Tmin = 0.768, Tmax = 0.794 k = −18→21
8512 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.047P)2 + 1.0911P] where P = (Fo2 + 2Fc2)/3
2108 reflections (Δ/σ)max < 0.001
123 parameters Δρmax = 0.36 e Å3
2 restraints Δρmin = −0.48 e Å3

Special details

Experimental. Spectroscopic data for the title compound :IR (KBr, cm-1): 3380m, 3133m, 1564s, 1533s, 1385s, 1307w, 1269w, 1130w, 1195w, 1074m, 970w, 880w, 829m, 751m, 682w, 656w, 534w, 495w.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.85967 (16) 0.48653 (12) 0.8087 (2) 0.0337 (4)
H1 0.9127 0.5069 0.8785 0.040*
C2 0.76108 (18) 0.52549 (13) 0.7609 (2) 0.0353 (4)
H2 0.7344 0.5768 0.7899 0.042*
C3 0.77741 (16) 0.40688 (11) 0.6505 (2) 0.0294 (4)
H3 0.7616 0.3627 0.5889 0.035*
C4 0.57558 (18) 0.56487 (12) 0.5293 (3) 0.0409 (5)
H4 0.6266 0.6082 0.5487 0.049*
C5 0.60153 (15) 0.48748 (11) 0.5802 (2) 0.0290 (4)
C6 0.52718 (19) 0.42289 (12) 0.5509 (3) 0.0408 (5)
H6 0.5461 0.3709 0.5851 0.049*
C7 1.08521 (15) 0.29993 (11) 0.43626 (19) 0.0266 (3)
C8 1.05530 (18) 0.30159 (14) 0.2748 (2) 0.0348 (4)
H8 1.1169 0.3027 0.2064 0.042*
N1 0.86960 (13) 0.41195 (10) 0.73829 (16) 0.0261 (3)
N2 0.70833 (13) 0.47384 (9) 0.66080 (18) 0.0288 (3)
Ni1 1.0000 0.323481 (18) 0.7500 0.01981 (12)
O1 1.00329 (10) 0.31848 (9) 0.52371 (16) 0.0310 (3)
O2 1.18776 (11) 0.27709 (9) 0.47076 (14) 0.0347 (3)
O3 0.86671 (12) 0.23178 (8) 0.74938 (13) 0.0291 (3)
H3Y 0.8214 0.2383 0.8237 0.044*
H3X 0.8264 0.2356 0.6701 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0277 (8) 0.0378 (10) 0.0358 (10) 0.0029 (7) −0.0078 (8) −0.0101 (8)
C2 0.0317 (9) 0.0328 (9) 0.0414 (11) 0.0050 (8) −0.0073 (8) −0.0121 (8)
C3 0.0260 (8) 0.0294 (9) 0.0327 (9) 0.0065 (7) −0.0078 (7) −0.0043 (7)
C4 0.0341 (10) 0.0268 (9) 0.0617 (14) 0.0004 (7) −0.0200 (10) −0.0014 (9)
C5 0.0221 (8) 0.0304 (9) 0.0344 (9) 0.0059 (6) −0.0081 (7) −0.0022 (7)
C6 0.0358 (10) 0.0244 (8) 0.0621 (14) 0.0050 (7) −0.0197 (10) 0.0031 (9)
C7 0.0272 (8) 0.0337 (9) 0.0189 (7) 0.0008 (7) −0.0008 (6) −0.0015 (7)
C8 0.0321 (10) 0.0489 (11) 0.0233 (8) 0.0010 (9) 0.0014 (7) 0.0001 (8)
N1 0.0212 (7) 0.0307 (8) 0.0266 (7) 0.0027 (6) −0.0046 (5) −0.0025 (6)
N2 0.0230 (7) 0.0287 (7) 0.0346 (8) 0.0049 (6) −0.0086 (6) −0.0031 (6)
Ni1 0.01593 (17) 0.02772 (18) 0.01579 (17) 0.000 −0.00177 (9) 0.000
O1 0.0255 (6) 0.0512 (9) 0.0164 (6) 0.0054 (5) −0.0009 (4) −0.0025 (5)
O2 0.0270 (6) 0.0532 (8) 0.0238 (6) 0.0093 (6) 0.0004 (5) −0.0013 (6)
O3 0.0263 (6) 0.0357 (7) 0.0253 (7) −0.0042 (5) −0.0021 (5) −0.0035 (5)

Geometric parameters (Å, º)

C1—C2 1.353 (3) C6—H6 0.9300
C1—N1 1.381 (2) C7—O1 1.253 (2)
C1—H1 0.9300 C7—O2 1.255 (2)
C2—N2 1.373 (2) C7—C8 1.496 (3)
C2—H2 0.9300 C8—C8ii 1.326 (4)
C3—N1 1.310 (2) C8—H8 0.9300
C3—N2 1.348 (2) N1—Ni1 2.0670 (15)
C3—H3 0.9300 Ni1—O1 2.0443 (15)
C4—C5 1.379 (3) Ni1—O1iii 2.0443 (15)
C4—C6i 1.381 (3) Ni1—N1iii 2.0671 (15)
C4—H4 0.9300 Ni1—O3iii 2.1247 (13)
C5—C6 1.375 (3) Ni1—O3 2.1247 (13)
C5—N2 1.425 (2) O3—H3Y 0.8500
C6—C4i 1.381 (3) O3—H3X 0.8501
C2—C1—N1 109.66 (16) C3—N1—Ni1 123.47 (13)
C2—C1—H1 125.2 C1—N1—Ni1 130.81 (12)
N1—C1—H1 125.2 C3—N2—C2 107.19 (15)
C1—C2—N2 106.02 (17) C3—N2—C5 125.53 (15)
C1—C2—H2 127.0 C2—N2—C5 127.28 (15)
N2—C2—H2 127.0 O1—Ni1—O1iii 175.41 (8)
N1—C3—N2 111.46 (16) O1—Ni1—N1 89.42 (5)
N1—C3—H3 124.3 O1iii—Ni1—N1 93.80 (5)
N2—C3—H3 124.3 O1—Ni1—N1iii 93.79 (5)
C5—C4—C6i 119.07 (18) O1iii—Ni1—N1iii 89.42 (5)
C5—C4—H4 120.5 N1—Ni1—N1iii 91.04 (9)
C6i—C4—H4 120.5 O1—Ni1—O3iii 87.80 (5)
C6—C5—C4 120.85 (16) O1iii—Ni1—O3iii 88.96 (5)
C6—C5—N2 119.55 (16) N1—Ni1—O3iii 177.19 (5)
C4—C5—N2 119.57 (16) N1iii—Ni1—O3iii 89.51 (6)
C5—C6—C4i 120.07 (18) O1—Ni1—O3 88.96 (5)
C5—C6—H6 120.0 O1iii—Ni1—O3 87.79 (5)
C4i—C6—H6 120.0 N1—Ni1—O3 89.50 (6)
O1—C7—O2 126.58 (16) N1iii—Ni1—O3 177.19 (5)
O1—C7—C8 116.29 (16) O3iii—Ni1—O3 90.09 (8)
O2—C7—C8 117.06 (16) C7—O1—Ni1 130.74 (12)
C8ii—C8—C7 122.8 (2) Ni1—O3—H3Y 109.6
C8ii—C8—H8 118.6 Ni1—O3—H3X 109.3
C7—C8—H8 118.6 H3Y—O3—H3X 109.5
C3—N1—C1 105.67 (15)
N1—C1—C2—N2 0.8 (2) C4—C5—N2—C2 36.9 (3)
C6i—C4—C5—C6 0.6 (4) C3—N1—Ni1—O1 45.30 (16)
C6i—C4—C5—N2 178.9 (2) C1—N1—Ni1—O1 −131.70 (17)
C4—C5—C6—C4i −0.6 (4) C3—N1—Ni1—O1iii −131.42 (15)
N2—C5—C6—C4i −178.9 (2) C1—N1—Ni1—O1iii 51.58 (17)
O1—C7—C8—C8ii −16.9 (2) C3—N1—Ni1—N1iii 139.09 (17)
O2—C7—C8—C8ii 160.34 (12) C1—N1—Ni1—N1iii −37.91 (15)
N2—C3—N1—C1 −0.2 (2) C3—N1—Ni1—O3iii 38.0 (12)
N2—C3—N1—Ni1 −177.88 (12) C1—N1—Ni1—O3iii −139.0 (10)
C2—C1—N1—C3 −0.4 (2) C3—N1—Ni1—O3 −43.66 (15)
C2—C1—N1—Ni1 177.04 (15) C1—N1—Ni1—O3 139.33 (17)
N1—C3—N2—C2 0.7 (2) O2—C7—O1—Ni1 2.1 (3)
N1—C3—N2—C5 −179.97 (17) C8—C7—O1—Ni1 179.05 (13)
C1—C2—N2—C3 −0.9 (2) O1iii—Ni1—O1—C7 −73.40 (17)
C1—C2—N2—C5 179.80 (19) N1—Ni1—O1—C7 152.04 (17)
C6—C5—N2—C3 36.0 (3) N1iii—Ni1—O1—C7 61.04 (17)
C4—C5—N2—C3 −142.3 (2) O3iii—Ni1—O1—C7 −28.32 (17)
C6—C5—N2—C2 −144.8 (2) O3—Ni1—O1—C7 −118.44 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y, −z+1/2; (iii) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3Y···O2iii 0.85 1.96 2.7033 (18) 146
O3—H3X···O2iv 0.85 2.03 2.8361 (18) 159
C3—H3···O2iv 0.93 2.49 3.360 (2) 155

Symmetry codes: (iii) −x+2, y, −z+3/2; (iv) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2481).

References

  1. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. [DOI] [PubMed]
  2. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195. [DOI] [PubMed]
  6. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247–289.
  7. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003b). CrystEngComm, 5, 269–279.
  8. Chen, S. S., Bai, Z. S., Fan, J., Lv, G. C., Su, Z., Chen, M. S. & Sun, W. Y. (2010). CrystEngComm, 12, 3091–3104.
  9. Harriman, A. & Sauvage, J. P. (1996). Chem. Soc. Rev. pp. 41–48.
  10. Li, Y. W., Ma, H., Chen, Y. Q., He, K. H., Li, Z. X. & Bu, X. H. (2012). Cryst. Growth Des. 12, 189–196.
  11. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. [DOI] [PubMed]
  12. Raymo, F. M. & Sauvage, J. P. (1999). Chem. Rev. 99, 1643–1664. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sun, D. F., Ma, S. Q., Ke, Y. X., Collins, D. J. & Zhou, H. C. (2006). J. Am. Chem. Soc. 128, 3896–3897. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Wu, H., Liu, H. Y., Liu, B., Yang, J., Liu, Y. Y., Ma, J. F., Liu, Y. Y. & Bai, H. Y. (2011). CrystEngComm, 13, 3402–3407.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812038895/su2481sup1.cif

e-68-m1286-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812038895/su2481Isup2.hkl

e-68-m1286-Isup2.hkl (103.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES