Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 26;68(Pt 10):m1296. doi: 10.1107/S1600536812039839

Tetra­kis(μ-2-phenyl­quinoline-4-carboxyl­ato-κ2 O:O′)bis­[(methanol-κO)copper(II)]

Junfang Guo a,*, Guoping Yan a
PMCID: PMC3470168  PMID: 23125612

Abstract

The title complex, [Cu2(C16H10NO2)4(CH3OH)2], consists of centrosymmetric wheel-shaped dinuclear neutral mol­ecules in which each CuII atom is coordinated in a slightly distorted square-pyramidal geometry by four O atoms of carboxyl­ate groups from different ligands at the basal plane and an O atom of a methanol mol­ecule at the axial position. In the crystal, the dinuclear complex mol­ecules are linked into one-dimensional supra­molecular columns parallel to the b axis by O—H⋯N hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.7259 (11) Å].

Related literature  

For the background to isonicotinic acid derivatives as polyfunctional ligands, see: Evans & Lin (2002); Aakeröy et al. (1999); Xiong et al. (2000); Qin et al. (2002); Shen et al. (2007). For the structures of related compounds, see: Bu et al. (2005); Wang et al. (2010); Ma & Lin (2008).graphic file with name e-68-m1296-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C16H10NO2)4(CH4O)2]

  • M r = 1184.16

  • Triclinic, Inline graphic

  • a = 8.9671 (6) Å

  • b = 10.5859 (7) Å

  • c = 14.7767 (10) Å

  • α = 89.800 (1)°

  • β = 87.348 (1)°

  • γ = 77.300 (1)°

  • V = 1366.86 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.31 × 0.24 × 0.17 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.780, T max = 0.870

  • 7266 measured reflections

  • 4984 independent reflections

  • 4583 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.06

  • 4984 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039839/rz5004sup1.cif

e-68-m1296-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039839/rz5004Isup2.hkl

e-68-m1296-Isup2.hkl (244.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯N1i 0.83 1.95 2.784 (2) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

The work described in this paper was supported by grants from the National Natural Science Foundation of China (NSFC 21001085), the Hubei Province Natural Science Foundation (2010CDB11104), and the Doctoral Program Foundation of Wuhan Institute of Technology (11105032).

supplementary crystallographic information

Comment

Isonicotinic acid and its derivatives, such as 9-acridinecarboxylic acid and 4-quinolinecarboxylic acid, bearing both neutral and anionic donor groups, have been widely used as polyfunctional ligands (Evans & Lin, 2002; Aakeröy et al., 1999; Xiong et al., 2000; Bu et al., 2005). 2-Phenylquinoline-4-carboxylic acid (HL), an analogue of isonicotinic acid, exhibits flexible ligation modes in the construction of diverse coordination motifs with unusual properties (Qin et al., 2002; Shen et al., 2007; Wang et al., 2010). Herein, we report a new copper(II) complex derived from 2-phenylquinoline-4-carboxylic acid.

The title complex shows a dinuclear paddle-wheel unit [Cu2(L)4(CH3OH)2] (Fig. 1), which is composed of two copper(II) ions, four L ligands and two methanol molecules. Each metal is pentacoordinated by four O atoms of the carboxylate groups from different ligands [Cu—O mean length = 1.961 (3) Å] at the equatorial plane and one O atom of a CH3OH molecule at the axial position. One of the most common parameters used to define the coordination geometry of a pentacoordinated metal center, the τ index, is 0.0003, indicating an almost-ideal square-pyramidal coordination. The metal ion deviates from the mean equatorial plane of the square pyramid toward the apical O5 atom by 0.1942 (3) Å. The Cu···Cu distance is 2.6303 (5) Å, which is within the normal range observed for dinuclear paddle-wheel units in the structures of copper(II) carboxylate complexes (Bu et al., 2005; Wang et al., 2010; Ma & Lin, 2008). In the crystal (Fig. 2), the dinuclear complex molecules are linked into one-dimensional columns parallel to the b axis through intermolecular O—H···N hydrogen bonds (Table 1) and π–π stacking interactions involving adjacent quinoline rings, with centroid–centroid distances of 3.7259 (11) Å and perpendicular interplanar separations of 3.4838 (8) Å.

Experimental

2-Phenylquinoline-4-carboxylic acid (49.8 mg, 0.2 mmol) in CH3OH/CHCl3 solution (1:1 v/v, 25 ml) was added to a CH3OH solution (25 ml) of Cu(NO3)2.2.5H2O (46.5 mg, 0.2 mmol). The resulting solution was filtered and left to stand at room temperature. Green block-shaped single crystals suitable for X-ray analysis were obtained after several days (yield: 45%).

Refinement

All H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and O—H = 0.83 Å, and with Uiso(H) = 1.5Ueq(C,O) for methyl and hydroxy H atoms and 1.2Ueq(C) otherwise.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry code (-x+1, -y, -z+1).

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound, showing the formation of a columnar supramolecular structure through hydrogen bonds (dashed lines).

Crystal data

[Cu2(C16H10NO2)4(CH4O)2] Z = 1
Mr = 1184.16 F(000) = 610
Triclinic, P1 Dx = 1.439 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 8.9671 (6) Å Cell parameters from 4273 reflections
b = 10.5859 (7) Å θ = 2.7–25.5°
c = 14.7767 (10) Å µ = 0.85 mm1
α = 89.800 (1)° T = 293 K
β = 87.348 (1)° Block, green
γ = 77.300 (1)° 0.31 × 0.24 × 0.17 mm
V = 1366.86 (16) Å3

Data collection

Bruker APEX CCD diffractometer 4984 independent reflections
Radiation source: fine-focus sealed tube 4583 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
φ and ω scans θmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.780, Tmax = 0.870 k = −10→12
7266 measured reflections l = −17→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.8119P] where P = (Fo2 + 2Fc2)/3
4984 reflections (Δ/σ)max = 0.002
370 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3269 (2) −0.31756 (19) 0.53165 (14) 0.0228 (4)
C2 0.3333 (2) −0.40391 (19) 0.45686 (14) 0.0232 (4)
C3 0.2708 (2) −0.51467 (19) 0.47299 (14) 0.0232 (4)
C4 0.2167 (2) −0.4635 (2) 0.62569 (14) 0.0245 (4)
C5 0.2661 (2) −0.3457 (2) 0.61337 (14) 0.0252 (4)
H5 0.2569 −0.2876 0.6614 0.030*
C6 0.3893 (2) −0.3828 (2) 0.36841 (14) 0.0283 (5)
H6 0.4318 −0.3113 0.3570 0.034*
C7 0.3817 (3) −0.4665 (2) 0.29958 (15) 0.0343 (5)
H7 0.4211 −0.4526 0.2420 0.041*
C8 0.3147 (3) −0.5737 (2) 0.31503 (16) 0.0345 (5)
H8 0.3066 −0.6281 0.2671 0.041*
C9 0.2618 (2) −0.5980 (2) 0.39974 (15) 0.0290 (5)
H9 0.2195 −0.6699 0.4095 0.035*
C10 0.1622 (2) −0.5001 (2) 0.71649 (14) 0.0280 (5)
C11 0.2097 (3) −0.6262 (2) 0.74798 (16) 0.0352 (5)
H11 0.2781 −0.6872 0.7126 0.042*
C12 0.1557 (3) −0.6609 (2) 0.83149 (17) 0.0424 (6)
H12 0.1883 −0.7450 0.8524 0.051*
C13 0.0531 (3) −0.5706 (3) 0.88392 (17) 0.0448 (6)
H13 0.0158 −0.5943 0.9397 0.054*
C14 0.0061 (3) −0.4456 (3) 0.85373 (17) 0.0437 (6)
H14 −0.0631 −0.3853 0.8891 0.052*
C15 0.0617 (3) −0.4093 (2) 0.77056 (16) 0.0348 (5)
H15 0.0317 −0.3242 0.7511 0.042*
C16 0.3837 (2) −0.19459 (19) 0.52106 (13) 0.0224 (4)
C17 0.6511 (3) −0.0701 (2) 0.75173 (14) 0.0278 (5)
C18 0.7991 (3) −0.0616 (2) 0.77910 (15) 0.0302 (5)
C19 0.8346 (3) −0.0995 (2) 0.86945 (15) 0.0319 (5)
C20 0.6033 (3) −0.1580 (2) 0.89854 (15) 0.0312 (5)
C21 0.5550 (3) −0.1164 (2) 0.81085 (15) 0.0299 (5)
H21 0.4578 −0.1209 0.7938 0.036*
C22 0.9081 (3) −0.0138 (3) 0.72450 (17) 0.0404 (6)
H22 0.8868 0.0109 0.6652 0.049*
C23 1.0445 (3) −0.0034 (3) 0.75807 (19) 0.0499 (7)
H23 1.1148 0.0287 0.7216 0.060*
C24 1.0790 (3) −0.0408 (3) 0.84710 (19) 0.0492 (7)
H24 1.1718 −0.0328 0.8694 0.059*
C25 0.9774 (3) −0.0891 (3) 0.90132 (17) 0.0419 (6)
H25 1.0026 −0.1153 0.9599 0.050*
C26 0.5958 (2) −0.0336 (2) 0.65834 (14) 0.0261 (4)
C27 0.5007 (3) −0.2130 (2) 0.96154 (16) 0.0369 (5)
C28 0.4088 (4) −0.2913 (3) 0.9297 (2) 0.0595 (8)
H28 0.4114 −0.3103 0.8682 0.071*
C29 0.3129 (4) −0.3413 (4) 0.9894 (2) 0.0801 (12)
H29 0.2533 −0.3954 0.9681 0.096*
C30 0.3061 (4) −0.3108 (4) 1.0805 (2) 0.0723 (11)
H30 0.2397 −0.3424 1.1203 0.087*
C31 0.3971 (4) −0.2339 (3) 1.1124 (2) 0.0565 (8)
H31 0.3928 −0.2142 1.1739 0.068*
C32 0.4952 (3) −0.1857 (3) 1.05379 (17) 0.0436 (6)
H32 0.5577 −0.1347 1.0761 0.052*
C33 0.0245 (3) 0.1999 (3) 0.5450 (2) 0.0491 (7)
H33A −0.0514 0.2706 0.5706 0.074*
H33B −0.0003 0.1194 0.5629 0.074*
H33C 0.0268 0.2059 0.4801 0.074*
N1 0.21783 (19) −0.54469 (16) 0.55746 (12) 0.0247 (4)
N2 0.7381 (2) −0.14840 (18) 0.92751 (12) 0.0331 (4)
O1 0.29567 (17) −0.09218 (14) 0.55023 (10) 0.0291 (3)
O2 0.51543 (16) −0.20471 (13) 0.48438 (10) 0.0278 (3)
O3 0.46126 (18) 0.03347 (15) 0.65482 (10) 0.0324 (4)
O4 0.68533 (17) −0.07591 (14) 0.59207 (10) 0.0290 (3)
O5 0.17001 (16) 0.20531 (13) 0.57646 (10) 0.0267 (3)
H1 0.1821 0.2812 0.5735 0.040*
Cu1 0.37041 (3) 0.06756 (2) 0.536332 (16) 0.02076 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0185 (10) 0.0188 (10) 0.0312 (11) −0.0041 (8) −0.0020 (8) 0.0042 (8)
C2 0.0184 (10) 0.0210 (10) 0.0294 (11) −0.0027 (8) −0.0018 (8) 0.0023 (8)
C3 0.0211 (10) 0.0192 (10) 0.0289 (11) −0.0039 (8) −0.0009 (8) 0.0037 (8)
C4 0.0215 (10) 0.0228 (10) 0.0294 (11) −0.0054 (8) 0.0007 (8) 0.0041 (9)
C5 0.0249 (10) 0.0215 (10) 0.0300 (11) −0.0072 (8) 0.0002 (8) −0.0004 (8)
C6 0.0291 (11) 0.0263 (11) 0.0306 (11) −0.0087 (9) 0.0003 (9) 0.0064 (9)
C7 0.0412 (13) 0.0353 (13) 0.0270 (11) −0.0105 (10) 0.0009 (10) 0.0058 (10)
C8 0.0444 (14) 0.0293 (12) 0.0307 (12) −0.0092 (10) −0.0045 (10) −0.0011 (9)
C9 0.0319 (12) 0.0217 (11) 0.0346 (12) −0.0084 (9) −0.0024 (9) 0.0014 (9)
C10 0.0296 (11) 0.0281 (11) 0.0295 (11) −0.0138 (9) 0.0000 (9) 0.0024 (9)
C11 0.0423 (13) 0.0311 (12) 0.0334 (12) −0.0110 (10) 0.0007 (10) 0.0048 (10)
C12 0.0583 (16) 0.0334 (13) 0.0397 (14) −0.0194 (12) −0.0022 (12) 0.0114 (11)
C13 0.0576 (16) 0.0556 (17) 0.0287 (12) −0.0297 (14) 0.0042 (11) 0.0051 (11)
C14 0.0470 (15) 0.0501 (16) 0.0350 (13) −0.0152 (12) 0.0101 (11) −0.0041 (12)
C15 0.0375 (13) 0.0330 (12) 0.0343 (12) −0.0090 (10) 0.0020 (10) 0.0009 (10)
C16 0.0232 (10) 0.0210 (10) 0.0238 (10) −0.0066 (8) −0.0026 (8) 0.0043 (8)
C17 0.0334 (12) 0.0252 (11) 0.0253 (11) −0.0071 (9) −0.0021 (9) −0.0008 (9)
C18 0.0335 (12) 0.0291 (12) 0.0292 (11) −0.0094 (9) −0.0018 (9) −0.0017 (9)
C19 0.0353 (12) 0.0314 (12) 0.0297 (12) −0.0085 (10) −0.0021 (9) −0.0012 (9)
C20 0.0343 (12) 0.0312 (12) 0.0275 (11) −0.0062 (10) −0.0012 (9) 0.0023 (9)
C21 0.0323 (12) 0.0311 (12) 0.0277 (11) −0.0094 (9) −0.0027 (9) 0.0010 (9)
C22 0.0442 (14) 0.0494 (15) 0.0327 (13) −0.0213 (12) −0.0010 (10) 0.0026 (11)
C23 0.0461 (15) 0.0695 (19) 0.0427 (15) −0.0320 (14) 0.0009 (12) 0.0010 (13)
C24 0.0397 (14) 0.0660 (19) 0.0484 (16) −0.0247 (13) −0.0077 (12) −0.0021 (14)
C25 0.0427 (14) 0.0529 (16) 0.0327 (13) −0.0145 (12) −0.0095 (11) −0.0011 (11)
C26 0.0336 (12) 0.0224 (10) 0.0256 (11) −0.0129 (9) −0.0026 (9) 0.0018 (8)
C27 0.0363 (13) 0.0426 (14) 0.0313 (12) −0.0074 (11) −0.0031 (10) 0.0125 (10)
C28 0.0622 (19) 0.086 (2) 0.0424 (16) −0.0414 (17) −0.0137 (14) 0.0240 (15)
C29 0.070 (2) 0.128 (3) 0.065 (2) −0.066 (2) −0.0248 (17) 0.046 (2)
C30 0.0505 (18) 0.112 (3) 0.061 (2) −0.0313 (19) −0.0030 (15) 0.049 (2)
C31 0.0649 (19) 0.0587 (18) 0.0397 (15) −0.0031 (15) 0.0116 (14) 0.0182 (13)
C32 0.0526 (16) 0.0404 (14) 0.0356 (13) −0.0065 (12) 0.0034 (11) 0.0096 (11)
C33 0.0239 (12) 0.0522 (16) 0.0721 (19) −0.0098 (11) −0.0035 (12) 0.0147 (14)
N1 0.0232 (9) 0.0217 (9) 0.0299 (9) −0.0066 (7) 0.0005 (7) 0.0035 (7)
N2 0.0389 (11) 0.0341 (11) 0.0266 (10) −0.0081 (9) −0.0031 (8) 0.0025 (8)
O1 0.0305 (8) 0.0200 (7) 0.0375 (9) −0.0089 (6) 0.0078 (6) 0.0006 (6)
O2 0.0236 (7) 0.0204 (7) 0.0407 (9) −0.0085 (6) 0.0020 (6) 0.0017 (6)
O3 0.0341 (9) 0.0381 (9) 0.0232 (8) −0.0040 (7) −0.0006 (6) 0.0037 (7)
O4 0.0327 (8) 0.0311 (8) 0.0232 (7) −0.0068 (7) −0.0026 (6) 0.0011 (6)
O5 0.0229 (7) 0.0185 (7) 0.0385 (8) −0.0044 (6) −0.0001 (6) 0.0005 (6)
Cu1 0.02186 (14) 0.01805 (14) 0.02282 (14) −0.00599 (10) 0.00180 (9) 0.00185 (9)

Geometric parameters (Å, º)

C1—C5 1.361 (3) C20—N2 1.325 (3)
C1—C2 1.428 (3) C20—C21 1.423 (3)
C1—C16 1.504 (3) C20—C27 1.485 (3)
C2—C6 1.413 (3) C21—H21 0.9300
C2—C3 1.421 (3) C22—C23 1.367 (4)
C3—N1 1.376 (3) C22—H22 0.9300
C3—C9 1.415 (3) C23—C24 1.401 (4)
C4—N1 1.325 (3) C23—H23 0.9300
C4—C5 1.421 (3) C24—C25 1.367 (4)
C4—C10 1.486 (3) C24—H24 0.9300
C5—H5 0.9300 C25—H25 0.9300
C6—C7 1.365 (3) C26—O4 1.256 (3)
C6—H6 0.9300 C26—O3 1.261 (3)
C7—C8 1.409 (3) C27—C28 1.388 (4)
C7—H7 0.9300 C27—C32 1.391 (3)
C8—C9 1.362 (3) C28—C29 1.387 (4)
C8—H8 0.9300 C28—H28 0.9300
C9—H9 0.9300 C29—C30 1.380 (5)
C10—C15 1.390 (3) C29—H29 0.9300
C10—C11 1.394 (3) C30—C31 1.372 (5)
C11—C12 1.383 (3) C30—H30 0.9300
C11—H11 0.9300 C31—C32 1.381 (4)
C12—C13 1.383 (4) C31—H31 0.9300
C12—H12 0.9300 C32—H32 0.9300
C13—C14 1.377 (4) C33—O5 1.418 (3)
C13—H13 0.9300 C33—H33A 0.9600
C14—C15 1.390 (3) C33—H33B 0.9600
C14—H14 0.9300 C33—H33C 0.9600
C15—H15 0.9300 O1—Cu1 1.9581 (14)
C16—O1 1.257 (2) O2—Cu1i 1.9674 (13)
C16—O2 1.260 (2) O3—Cu1 1.9641 (15)
C17—C21 1.363 (3) O4—Cu1i 1.9812 (14)
C17—C18 1.427 (3) O5—Cu1 2.1125 (14)
C17—C26 1.508 (3) O5—H1 0.8340
C18—C22 1.416 (3) Cu1—O2i 1.9674 (14)
C18—C19 1.423 (3) Cu1—O4i 1.9812 (14)
C19—N2 1.370 (3) Cu1—Cu1i 2.6303 (5)
C19—C25 1.411 (3)
C5—C1—C2 119.56 (18) C23—C22—C18 120.7 (2)
C5—C1—C16 119.45 (18) C23—C22—H22 119.7
C2—C1—C16 120.98 (17) C18—C22—H22 119.7
C6—C2—C3 118.79 (19) C22—C23—C24 120.4 (2)
C6—C2—C1 124.56 (18) C22—C23—H23 119.8
C3—C2—C1 116.57 (18) C24—C23—H23 119.8
N1—C3—C9 118.14 (18) C25—C24—C23 120.5 (2)
N1—C3—C2 122.63 (18) C25—C24—H24 119.8
C9—C3—C2 119.23 (19) C23—C24—H24 119.8
N1—C4—C5 121.68 (19) C24—C25—C19 120.7 (2)
N1—C4—C10 117.63 (18) C24—C25—H25 119.6
C5—C4—C10 120.69 (19) C19—C25—H25 119.6
C1—C5—C4 120.35 (19) O4—C26—O3 126.5 (2)
C1—C5—H5 119.8 O4—C26—C17 117.32 (19)
C4—C5—H5 119.8 O3—C26—C17 116.17 (19)
C7—C6—C2 120.5 (2) C28—C27—C32 119.1 (2)
C7—C6—H6 119.7 C28—C27—C20 120.9 (2)
C2—C6—H6 119.7 C32—C27—C20 120.0 (2)
C6—C7—C8 120.6 (2) C29—C28—C27 120.2 (3)
C6—C7—H7 119.7 C29—C28—H28 119.9
C8—C7—H7 119.7 C27—C28—H28 119.9
C9—C8—C7 120.4 (2) C30—C29—C28 120.0 (3)
C9—C8—H8 119.8 C30—C29—H29 120.0
C7—C8—H8 119.8 C28—C29—H29 120.0
C8—C9—C3 120.4 (2) C31—C30—C29 120.0 (3)
C8—C9—H9 119.8 C31—C30—H30 120.0
C3—C9—H9 119.8 C29—C30—H30 120.0
C15—C10—C11 119.2 (2) C30—C31—C32 120.4 (3)
C15—C10—C4 120.3 (2) C30—C31—H31 119.8
C11—C10—C4 120.4 (2) C32—C31—H31 119.8
C12—C11—C10 120.3 (2) C31—C32—C27 120.2 (3)
C12—C11—H11 119.8 C31—C32—H32 119.9
C10—C11—H11 119.8 C27—C32—H32 119.9
C11—C12—C13 120.0 (2) O5—C33—H33A 109.5
C11—C12—H12 120.0 O5—C33—H33B 109.5
C13—C12—H12 120.0 H33A—C33—H33B 109.5
C14—C13—C12 120.2 (2) O5—C33—H33C 109.5
C14—C13—H13 119.9 H33A—C33—H33C 109.5
C12—C13—H13 119.9 H33B—C33—H33C 109.5
C13—C14—C15 120.2 (2) C4—N1—C3 118.90 (17)
C13—C14—H14 119.9 C20—N2—C19 118.18 (19)
C15—C14—H14 119.9 C16—O1—Cu1 116.67 (13)
C14—C15—C10 120.0 (2) C16—O2—Cu1i 128.06 (13)
C14—C15—H15 120.0 C26—O3—Cu1 119.04 (14)
C10—C15—H15 120.0 C26—O4—Cu1i 125.28 (14)
O1—C16—O2 126.46 (18) C33—O5—Cu1 122.05 (15)
O1—C16—C1 116.89 (17) C33—O5—H1 109.7
O2—C16—C1 116.64 (17) Cu1—O5—H1 112.6
C21—C17—C18 119.5 (2) O1—Cu1—O3 88.25 (7)
C21—C17—C26 117.53 (19) O1—Cu1—O2i 168.60 (6)
C18—C17—C26 122.98 (19) O3—Cu1—O2i 89.51 (6)
C22—C18—C19 118.7 (2) O1—Cu1—O4i 89.50 (6)
C22—C18—C17 124.8 (2) O3—Cu1—O4i 168.63 (6)
C19—C18—C17 116.4 (2) O2i—Cu1—O4i 90.51 (6)
N2—C19—C25 117.6 (2) O1—Cu1—O5 100.09 (6)
N2—C19—C18 123.4 (2) O3—Cu1—O5 99.20 (6)
C25—C19—C18 119.0 (2) O2i—Cu1—O5 91.30 (6)
N2—C20—C21 122.3 (2) O4i—Cu1—O5 92.17 (6)
N2—C20—C27 117.7 (2) O1—Cu1—Cu1i 89.46 (4)
C21—C20—C27 120.0 (2) O3—Cu1—Cu1i 87.46 (5)
C17—C21—C20 120.1 (2) O2i—Cu1—Cu1i 79.27 (4)
C17—C21—H21 119.9 O4i—Cu1—Cu1i 81.37 (5)
C20—C21—H21 119.9 O5—Cu1—Cu1i 168.47 (4)
C5—C1—C2—C6 178.0 (2) C23—C24—C25—C19 −1.4 (4)
C16—C1—C2—C6 −0.9 (3) N2—C19—C25—C24 −179.8 (2)
C5—C1—C2—C3 1.4 (3) C18—C19—C25—C24 1.3 (4)
C16—C1—C2—C3 −177.41 (17) C21—C17—C26—O4 −131.5 (2)
C6—C2—C3—N1 178.03 (19) C18—C17—C26—O4 46.7 (3)
C1—C2—C3—N1 −5.2 (3) C21—C17—C26—O3 46.2 (3)
C6—C2—C3—C9 −2.1 (3) C18—C17—C26—O3 −135.6 (2)
C1—C2—C3—C9 174.67 (18) N2—C20—C27—C28 −143.6 (3)
C2—C1—C5—C4 3.3 (3) C21—C20—C27—C28 37.0 (4)
C16—C1—C5—C4 −177.83 (18) N2—C20—C27—C32 36.8 (3)
N1—C4—C5—C1 −4.8 (3) C21—C20—C27—C32 −142.6 (2)
C10—C4—C5—C1 174.91 (19) C32—C27—C28—C29 0.0 (5)
C3—C2—C6—C7 0.8 (3) C20—C27—C28—C29 −179.6 (3)
C1—C2—C6—C7 −175.6 (2) C27—C28—C29—C30 1.5 (6)
C2—C6—C7—C8 1.4 (3) C28—C29—C30—C31 −1.8 (6)
C6—C7—C8—C9 −2.5 (4) C29—C30—C31—C32 0.5 (5)
C7—C8—C9—C3 1.2 (3) C30—C31—C32—C27 1.0 (4)
N1—C3—C9—C8 −179.0 (2) C28—C27—C32—C31 −1.2 (4)
C2—C3—C9—C8 1.1 (3) C20—C27—C32—C31 178.4 (2)
N1—C4—C10—C15 −135.3 (2) C5—C4—N1—C3 1.1 (3)
C5—C4—C10—C15 45.0 (3) C10—C4—N1—C3 −178.63 (18)
N1—C4—C10—C11 44.0 (3) C9—C3—N1—C4 −175.89 (19)
C5—C4—C10—C11 −135.8 (2) C2—C3—N1—C4 4.0 (3)
C15—C10—C11—C12 1.0 (3) C21—C20—N2—C19 −1.6 (3)
C4—C10—C11—C12 −178.3 (2) C27—C20—N2—C19 179.0 (2)
C10—C11—C12—C13 0.5 (4) C25—C19—N2—C20 179.6 (2)
C11—C12—C13—C14 −0.8 (4) C18—C19—N2—C20 −1.6 (3)
C12—C13—C14—C15 −0.2 (4) O2—C16—O1—Cu1 0.5 (3)
C13—C14—C15—C10 1.6 (4) C1—C16—O1—Cu1 179.94 (13)
C11—C10—C15—C14 −2.0 (3) O1—C16—O2—Cu1i 2.0 (3)
C4—C10—C15—C14 177.2 (2) C1—C16—O2—Cu1i −177.45 (13)
C5—C1—C16—O1 −48.6 (3) O4—C26—O3—Cu1 5.0 (3)
C2—C1—C16—O1 130.2 (2) C17—C26—O3—Cu1 −172.51 (13)
C5—C1—C16—O2 130.9 (2) O3—C26—O4—Cu1i −8.3 (3)
C2—C1—C16—O2 −50.3 (3) C17—C26—O4—Cu1i 169.13 (13)
C21—C17—C18—C22 −179.1 (2) C16—O1—Cu1—O3 −89.21 (15)
C26—C17—C18—C22 2.7 (4) C16—O1—Cu1—O2i −10.4 (4)
C21—C17—C18—C19 −1.8 (3) C16—O1—Cu1—O4i 79.64 (15)
C26—C17—C18—C19 179.97 (19) C16—O1—Cu1—O5 171.75 (15)
C22—C18—C19—N2 −179.2 (2) C16—O1—Cu1—Cu1i −1.74 (15)
C17—C18—C19—N2 3.3 (3) C26—O3—Cu1—O1 89.18 (16)
C22—C18—C19—C25 −0.4 (3) C26—O3—Cu1—O2i −79.64 (16)
C17—C18—C19—C25 −177.9 (2) C26—O3—Cu1—O4i 10.5 (4)
C18—C17—C21—C20 −1.1 (3) C26—O3—Cu1—O5 −170.88 (15)
C26—C17—C21—C20 177.21 (19) C26—O3—Cu1—Cu1i −0.36 (15)
N2—C20—C21—C17 3.0 (3) C33—O5—Cu1—O1 −45.20 (18)
C27—C20—C21—C17 −177.7 (2) C33—O5—Cu1—O3 −135.05 (17)
C19—C18—C22—C23 −0.4 (4) C33—O5—Cu1—O2i 135.23 (17)
C17—C18—C22—C23 176.8 (2) C33—O5—Cu1—O4i 44.68 (17)
C18—C22—C23—C24 0.4 (4) C33—O5—Cu1—Cu1i 100.3 (2)
C22—C23—C24—C25 0.5 (5)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1···N1ii 0.83 1.95 2.784 (2) 176

Symmetry code: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5004).

References

  1. Aakeröy, C., Beatty, A. & Leinen, D. (1999). Angew. Chem. Int. Ed. 38, 1815–1819. [DOI] [PubMed]
  2. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison , Wisconsin , USA .
  3. Bu, X., Tong, M., Xie, Y., Li, J., Chang, H., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846. [DOI] [PubMed]
  4. Evans, O. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. [DOI] [PubMed]
  5. Ma, L. & Lin, W. (2008). J. Am. Chem. Soc. 130, 13834–13835. [DOI] [PubMed]
  6. Qin, Z., Jennings, M., Puddephatt, R. & Muir, K. (2002). Inorg. Chem. 41, 5174–5186. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shen, Y., Li, Z., Cheng, J., Qin, Y. & Yao, Y. (2007). Inorg. Chem. Commun. 10, 888–890.
  9. Wang, J., Chang, Z., Zhang, A., Hu, T. & Bu, X. (2010). Inorg. Chim. Acta, 363, 1377–1385.
  10. Xiong, R., Zuo, J., You, X., Fun, H. & Raj, S. (2000). Organometallics, 19, 4183–4186.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812039839/rz5004sup1.cif

e-68-m1296-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039839/rz5004Isup2.hkl

e-68-m1296-Isup2.hkl (244.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES