Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 26;68(Pt 10):m1299. doi: 10.1107/S1600536812039256

catena-Poly[[[bis­(thio­cyanato-κN)zinc]bis­[μ-1,3,5-tris­(1H-1,2,4-triazol-1-yl­meth­yl)benzene-κ2 N 4:N 4′]] mono­hydrate]

Qing-Xia Li a, Xian-Ju Shi a,*, Lai-Cheng Chen a
PMCID: PMC3470170  PMID: 23125614

Abstract

In the title complex, {[Zn(NCS)2(C15H15N9)2]·H2O}n, the ZnII ion is located on an inversion centre and is six-coordinated in a distorted octa­hedral geometry, coordinated by N atoms from four bridging 1,3,5-tris­(1,2,4-triazol-1-ylmeth­yl)benzene (ttmb) ligands and two terminal SCN counter-anions. Two of the three triazol groups in each ttmb ligand link the ZnII atoms, forming a looped-chain structure along [0-11]. The lattice water molecule shows half-occupancy due to disorder around an inversion centre.

Related literature  

For background to the use of flexible tripodal compounds in the design and construction of compounds with metal-organic framework structures, see: Moon et al. (2006); Xu et al. (2009). For similar structures, see: Yin et al. (2009); Shi et al. (2011).graphic file with name e-68-m1299-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(NCS)2(C15H15N9)2]·H2O

  • M r = 842.27

  • Triclinic, Inline graphic

  • a = 8.5766 (17) Å

  • b = 9.5036 (19) Å

  • c = 11.723 (2) Å

  • α = 80.01 (3)°

  • β = 85.40 (3)°

  • γ = 89.55 (3)°

  • V = 938.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection  

  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006) T min = 0.852, T max = 0.879

  • 11566 measured reflections

  • 4444 independent reflections

  • 3972 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.05

  • 4444 reflections

  • 265 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039256/ds2211sup1.cif

e-68-m1299-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039256/ds2211Isup2.hkl

e-68-m1299-Isup2.hkl (217.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation (No. 20971110) and the program for the construction of Puyang Key Laboratory.

supplementary crystallographic information

Comment

Flexible tripodal compounds are known to be the versatile structural constructors in the rational design and construction of novel metal-organic frameworks (MOFs), in respect that its three potential coordination groups can bend and rotate freely to satisfy various coordination preferences and facilitate the formation of various complexes with diverse structures and properties (Moon et al., 2006; Xu et al., 2009). Therefore, the prospect of exploring the influential principles of tripodal compounds on the resulting framework structures provides an impetus for further researches on tripodal compounds. We were thus engaged in the synthesis of a flexible tripodal N-heterocyclic compound 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (Yin et al., 2009; Shi et al., 2011), and employed it as a ligand to construct a new complex {[Zn(SCN)2(ttmb)2].H2O}n. In the title complex, ZnII ion is six-coordinated in a distorted octahedral geometry, coordinated by N2, N2A, N8 and N8A from four ttmb ligands, and N1, N1A from two terminal counter-anion SCN- (Fig. 1). In ttmb, the center of one triazol ring lies inside the benzene plane with the dihedral angle of 89.4 °, and the other two triazol rings lie in the opposite orientation outside the plane to form an infrequent trans conformation. Two of the three triazol groups in each ttmb link the ZnII centers together to form an one-dimensional looped-chain structure (Fig. 2), in which the ZnII ions are collinear with the adjacent Zn···Zn distance of 13.8 Å.

Experimental

A reaction mixture of ZnSO4.7H2O (29 mg, 0.1 mmol), 1,3,5-tris(1,2,4-triazol-1-ylmethyl)-benzene (ttmb) (32.1 mg, 0.1 mmol), KSCN (19.4 mg, 0.2 mmol), and 10 ml water was sealed in a Teflon-lined stainless steel vessel, which was heated at 130 °C for 72 h, and then cooled to room temperature, obtaining colorless crystals of the title complex. Yield (based on Zn): 31%.

Refinement

H atoms were generated geometrically and refined as riding atoms with C-H = 0.93 Å, 0.97 (CH2) Å and Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

A fragment of the title complex, showing the coordination environment of ZnII center with atom labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.

Fig. 2.

Fig. 2.

View of the one-dimensional looped-chain structure of the title complex.

Crystal data

[Zn(NCS)2(C15H15N9)2]·H2O Z = 1
Mr = 842.27 F(000) = 434
Triclinic, P1 Dx = 1.491 Mg m3
a = 8.5766 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5036 (19) Å Cell parameters from 2773 reflections
c = 11.723 (2) Å θ = 2.2–27.9°
α = 80.01 (3)° µ = 0.83 mm1
β = 85.40 (3)° T = 293 K
γ = 89.55 (3)° Prism, colorless
V = 938.0 (3) Å3 0.20 × 0.18 × 0.16 mm

Data collection

Rigaku Saturn724 diffractometer 4444 independent reflections
Radiation source: fine-focus sealed tube 3972 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 28.5714 pixels mm-1 θmax = 27.9°, θmin = 2.2°
ω and φ scans h = −11→11
Absorption correction: multi-scan ? k = −12→12
Tmin = 0.852, Tmax = 0.879 l = −15→15
11566 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.3475P] where P = (Fo2 + 2Fc2)/3
4444 reflections (Δ/σ)max < 0.001
265 parameters Δρmax = 0.61 e Å3
9 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.0000 1.0000 0.0000 0.03753 (14)
N1 −0.1335 (3) 1.0823 (3) 0.1368 (2) 0.0516 (6)
N2 0.1925 (2) 0.9400 (2) 0.11113 (18) 0.0398 (5)
N3 0.3170 (2) 0.8611 (2) 0.26349 (17) 0.0374 (4)
N4 0.4133 (3) 0.8369 (3) 0.1727 (2) 0.0561 (7)
N5 0.2223 (3) 0.2854 (2) 0.3054 (2) 0.0431 (5)
N8 0.0899 (2) 1.2105 (2) −0.06854 (18) 0.0397 (5)
N9 0.0847 (3) 1.4448 (3) −0.1391 (2) 0.0579 (7)
N10 0.2207 (3) 1.3860 (2) −0.17586 (18) 0.0395 (5)
O1 0.5990 (11) 0.4298 (9) 0.9817 (9) 0.135 (3) 0.50
C2 0.1872 (3) 0.9224 (3) 0.2261 (2) 0.0404 (5)
H2 0.1043 0.9494 0.2736 0.049*
C3 0.3328 (3) 0.8857 (4) 0.0833 (2) 0.0527 (7)
H3 0.3701 0.8829 0.0070 0.063*
C4 0.3613 (4) 0.8227 (3) 0.3821 (2) 0.0444 (6)
H4B 0.3159 0.8913 0.4273 0.053*
H4A 0.4742 0.8302 0.3812 0.053*
C5 0.3110 (3) 0.6738 (2) 0.4421 (2) 0.0343 (5)
C6 0.3413 (3) 0.6377 (2) 0.5581 (2) 0.0350 (5)
H6 0.3910 0.7036 0.5933 0.042*
C7 0.2990 (3) 0.5056 (3) 0.6222 (2) 0.0357 (5)
C8 0.2262 (3) 0.4067 (3) 0.5681 (2) 0.0396 (5)
H8 0.1982 0.3171 0.6103 0.048*
C9 0.1954 (3) 0.4408 (3) 0.4526 (2) 0.0385 (5)
C10 0.2379 (3) 0.5756 (3) 0.3897 (2) 0.0381 (5)
H10 0.2168 0.5993 0.3121 0.046*
C11 0.1173 (3) 0.3323 (3) 0.3945 (3) 0.0466 (6)
H11B 0.0839 0.2503 0.4527 0.056*
H11A 0.0251 0.3744 0.3599 0.056*
C14 0.3404 (3) 0.4707 (3) 0.7471 (2) 0.0458 (6)
H14A 0.4382 0.4187 0.7498 0.055*
H14B 0.3564 0.5592 0.7753 0.055*
C15 0.0108 (4) 1.3348 (3) −0.0744 (3) 0.0528 (7)
H15 −0.0874 1.3420 −0.0360 0.063*
C16 0.2207 (3) 1.2478 (3) −0.1330 (2) 0.0412 (6)
H16 0.3017 1.1857 −0.1465 0.049*
C1 −0.1657 (3) 1.0544 (3) 0.2354 (2) 0.0422 (6)
N6 0.3491 (3) 0.2042 (3) 0.3333 (2) 0.0560 (6)
N7 0.3519 (4) 0.2694 (3) 0.1395 (3) 0.0728 (8)
C12 0.4207 (4) 0.1989 (4) 0.2304 (3) 0.0599 (8)
H12 0.5134 0.1490 0.2217 0.072*
C13 0.2266 (5) 0.3210 (4) 0.1909 (3) 0.0661 (9)
H13 0.1508 0.3756 0.1514 0.079*
H1A 0.517 (7) 0.391 (8) 1.021 (7) 0.099* 0.50
H1B 0.588 (10) 0.5203 (18) 0.969 (8) 0.099* 0.50
S1 −0.21123 (13) 1.00586 (11) 0.37384 (7) 0.0710 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0382 (2) 0.0368 (2) 0.0329 (2) 0.00232 (16) −0.00183 (16) 0.00624 (15)
N1 0.0540 (14) 0.0583 (15) 0.0387 (12) 0.0090 (11) 0.0033 (11) −0.0010 (11)
N2 0.0371 (11) 0.0417 (11) 0.0377 (11) 0.0018 (9) −0.0051 (9) 0.0024 (9)
N3 0.0422 (11) 0.0363 (10) 0.0313 (10) 0.0001 (8) −0.0048 (8) 0.0018 (8)
N4 0.0436 (13) 0.0825 (19) 0.0403 (12) 0.0183 (12) −0.0039 (10) −0.0054 (12)
N5 0.0470 (12) 0.0392 (11) 0.0464 (12) 0.0006 (9) −0.0147 (10) −0.0112 (9)
N8 0.0418 (11) 0.0370 (11) 0.0364 (10) 0.0007 (9) −0.0020 (9) 0.0040 (8)
N9 0.0670 (16) 0.0378 (12) 0.0624 (16) 0.0086 (11) 0.0138 (13) 0.0002 (11)
N10 0.0450 (12) 0.0347 (10) 0.0358 (10) −0.0016 (9) −0.0034 (9) 0.0023 (8)
O1 0.147 (7) 0.097 (5) 0.142 (7) −0.010 (5) 0.029 (6) 0.012 (5)
C2 0.0390 (13) 0.0412 (13) 0.0391 (13) 0.0037 (10) −0.0015 (10) −0.0019 (10)
C3 0.0417 (15) 0.079 (2) 0.0343 (13) 0.0104 (14) −0.0010 (11) −0.0011 (13)
C4 0.0587 (16) 0.0396 (13) 0.0333 (12) −0.0075 (12) −0.0109 (11) 0.0017 (10)
C5 0.0352 (12) 0.0323 (11) 0.0340 (11) 0.0014 (9) −0.0028 (9) −0.0019 (9)
C6 0.0365 (12) 0.0337 (11) 0.0345 (12) −0.0018 (9) −0.0060 (9) −0.0034 (9)
C7 0.0360 (12) 0.0356 (12) 0.0336 (11) −0.0013 (9) −0.0033 (9) −0.0004 (9)
C8 0.0412 (13) 0.0328 (12) 0.0425 (13) −0.0024 (10) −0.0027 (11) −0.0003 (10)
C9 0.0358 (12) 0.0368 (12) 0.0439 (13) −0.0017 (10) −0.0028 (10) −0.0098 (10)
C10 0.0435 (13) 0.0380 (12) 0.0330 (12) 0.0014 (10) −0.0068 (10) −0.0055 (10)
C11 0.0446 (15) 0.0441 (14) 0.0535 (16) −0.0052 (11) −0.0081 (12) −0.0131 (12)
C14 0.0505 (15) 0.0461 (14) 0.0368 (13) −0.0133 (12) −0.0084 (11) 0.0072 (11)
C15 0.0564 (17) 0.0432 (15) 0.0531 (16) 0.0054 (12) 0.0138 (13) −0.0011 (12)
C16 0.0390 (13) 0.0381 (13) 0.0426 (13) 0.0035 (10) −0.0054 (11) 0.0050 (10)
C1 0.0423 (14) 0.0388 (13) 0.0457 (14) 0.0095 (10) −0.0019 (11) −0.0090 (11)
N6 0.0552 (15) 0.0525 (14) 0.0631 (16) 0.0080 (11) −0.0175 (13) −0.0127 (12)
N7 0.089 (2) 0.074 (2) 0.0569 (17) 0.0002 (17) 0.0022 (16) −0.0172 (15)
C12 0.0532 (18) 0.0542 (18) 0.078 (2) −0.0016 (14) −0.0063 (16) −0.0266 (16)
C13 0.086 (2) 0.063 (2) 0.0518 (18) 0.0154 (18) −0.0215 (17) −0.0102 (15)
S1 0.0963 (6) 0.0730 (5) 0.0395 (4) 0.0230 (5) 0.0105 (4) −0.0065 (4)

Geometric parameters (Å, º)

Zn1—N8 2.146 (2) C4—H4B 0.9700
Zn1—N8i 2.146 (2) C4—H4A 0.9700
Zn1—N1 2.149 (2) C5—C10 1.383 (3)
Zn1—N1i 2.149 (2) C5—C6 1.390 (3)
Zn1—N2i 2.196 (2) C6—C7 1.382 (3)
Zn1—N2 2.196 (2) C6—H6 0.9300
N1—C1 1.152 (3) C7—C8 1.398 (3)
N2—C2 1.327 (3) C7—C14 1.515 (3)
N2—C3 1.344 (3) C8—C9 1.383 (4)
N3—C2 1.322 (3) C8—H8 0.9300
N3—N4 1.346 (3) C9—C10 1.398 (3)
N3—C4 1.455 (3) C9—C11 1.518 (3)
N4—C3 1.316 (4) C10—H10 0.9300
N5—C13 1.324 (4) C11—H11B 0.9700
N5—N6 1.357 (3) C11—H11A 0.9700
N5—C11 1.452 (4) C14—N10iii 1.459 (3)
N8—C16 1.316 (3) C14—H14A 0.9700
N8—C15 1.353 (4) C14—H14B 0.9700
N9—C15 1.314 (4) C15—H15 0.9300
N9—N10 1.361 (3) C16—H16 0.9300
N10—C16 1.322 (3) C1—S1 1.625 (3)
N10—C14ii 1.459 (3) N6—C12 1.317 (4)
O1—H1A 0.853 (13) N7—C13 1.322 (5)
O1—H1B 0.853 (13) N7—C12 1.334 (5)
C2—H2 0.9300 C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.516 (3)
N8—Zn1—N8i 180.0 C10—C5—C6 119.5 (2)
N8—Zn1—N1 89.99 (9) C10—C5—C4 124.7 (2)
N8i—Zn1—N1 90.01 (9) C6—C5—C4 115.9 (2)
N8—Zn1—N1i 90.01 (9) C7—C6—C5 121.1 (2)
N8i—Zn1—N1i 89.99 (9) C7—C6—H6 119.5
N1—Zn1—N1i 180.0 C5—C6—H6 119.5
N8—Zn1—N2i 85.29 (8) C6—C7—C8 119.0 (2)
N8i—Zn1—N2i 94.71 (8) C6—C7—C14 118.5 (2)
N1—Zn1—N2i 88.53 (9) C8—C7—C14 122.4 (2)
N1i—Zn1—N2i 91.47 (9) C9—C8—C7 120.6 (2)
N8—Zn1—N2 94.71 (8) C9—C8—H8 119.7
N8i—Zn1—N2 85.29 (8) C7—C8—H8 119.7
N1—Zn1—N2 91.47 (9) C8—C9—C10 119.4 (2)
N1i—Zn1—N2 88.53 (9) C8—C9—C11 120.2 (2)
N2i—Zn1—N2 180.00 (11) C10—C9—C11 120.4 (2)
C1—N1—Zn1 140.3 (2) C5—C10—C9 120.4 (2)
C2—N2—C3 102.6 (2) C5—C10—H10 119.8
C2—N2—Zn1 127.61 (18) C9—C10—H10 119.8
C3—N2—Zn1 128.64 (18) N5—C11—C9 111.5 (2)
C2—N3—N4 109.9 (2) N5—C11—H11B 109.3
C2—N3—C4 128.9 (2) C9—C11—H11B 109.3
N4—N3—C4 121.2 (2) N5—C11—H11A 109.3
C3—N4—N3 102.6 (2) C9—C11—H11A 109.3
C13—N5—N6 108.7 (3) H11B—C11—H11A 108.0
C13—N5—C11 129.8 (3) N10iii—C14—C7 113.3 (2)
N6—N5—C11 121.1 (2) N10iii—C14—H14A 108.9
C16—N8—C15 103.1 (2) C7—C14—H14A 108.9
C16—N8—Zn1 128.82 (18) N10iii—C14—H14B 108.9
C15—N8—Zn1 126.93 (19) C7—C14—H14B 108.9
C15—N9—N10 102.7 (2) H14A—C14—H14B 107.7
C16—N10—N9 109.5 (2) N9—C15—N8 114.2 (3)
C16—N10—C14ii 128.6 (2) N9—C15—H15 122.9
N9—N10—C14ii 121.8 (2) N8—C15—H15 122.9
H1A—O1—H1B 109 (3) N8—C16—N10 110.5 (2)
N2—C2—N3 110.2 (2) N8—C16—H16 124.8
N2—C2—H2 124.9 N10—C16—H16 124.8
N3—C2—H2 124.9 N1—C1—S1 176.9 (3)
N4—C3—N2 114.6 (2) C12—N6—N5 102.2 (3)
N4—C3—H3 122.7 C13—N7—C12 101.6 (3)
N2—C3—H3 122.7 N6—C12—N7 115.9 (3)
N3—C4—C5 114.5 (2) N6—C12—H12 122.1
N3—C4—H4B 108.6 N7—C12—H12 122.1
C5—C4—H4B 108.6 N5—C13—N7 111.6 (3)
N3—C4—H4A 108.6 N5—C13—H13 124.2
C5—C4—H4A 108.6 N7—C13—H13 124.2
H4B—C4—H4A 107.6

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y+1, z−1; (iii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2211).

References

  1. Moon, D., Kang, S., Park, J., Lee, K., John, R. P., Won, H., Seong, G. H., Kim, Y. S., Kim, G. H., Rhee, H. & Lah, M. S. (2006). J. Am. Chem. Soc. 128, 3530–3531. [DOI] [PubMed]
  2. Rigaku/MSC (2006). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shi, X.-J., Zhang, X.-H., Li, X.-X., Hou, H.-W. & Fan, Y.-T. (2011). J. Mol. Struct. 996, 110–114.
  5. Xu, G.-C., Ding, Y.-J., Okamura, T., Huang, Y.-Q., Bai, Z.-S., Hua, Q., Liu, G.-X. & Sun, W.-Y. (2009). Cryst. Growth Des. 9, 395–403.
  6. Yin, X.-J., Zhou, X.-H., Gu, Z.-G., Zuo, J.-L. & You, X.-Z. (2009). Inorg. Chem. Commun. 12, 548–551.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039256/ds2211sup1.cif

e-68-m1299-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039256/ds2211Isup2.hkl

e-68-m1299-Isup2.hkl (217.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES