Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 26;68(Pt 10):m1303–m1304. doi: 10.1107/S1600536812036641

Poly[μ-aqua-diaquabis­[μ-2-cyano-2-(oxidoimino)­acetato]­copper(II)dipotassium]

Irina A Golenya a, Yulia A Izotova b, Natalia I Usenko a, Valentina A Kalibabchuk c,*, Natalia V Kotova a
PMCID: PMC3470173  PMID: 23125617

Abstract

In the title compound, [CuK2(C3N2O3)2(H2O)3]n, the Cu2+ atom is in a distorted square-pyramidal coordination geometry. Two N atoms belonging to the oxime groups and two O atoms belonging to the carboxyl­ate groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hy­droxy­imino)­acetic acid make up the basal plane and the apical position is occupied by the water mol­ecule. The neighboring Cu-containing moieties are linked into a three-dimensional framework by K—O and K—N contacts formed by two potassium cations with the carboxyl­ate and the oxime O atoms and the nitrile N atoms of the ligand. The environments of the K+ cations are complemented to octa- and nona­coordinated, by K—O contacts with H2O mol­ecules. The crystal structure features O—H⋯O hydrogen bonds.

Related literature  

For the use of mononuclear complexes in the preparation of polynuclear complexes, see: Kahn (1993); Goodwin et al. (2000); Krämer & Fritsky (2000); Fritsky et al. (2001, 2003); Wörl et al. (2005). For the use of derivatives of 2-hy­droxy­imino­carb­oxy­lic acids and their derivatives as versatile ligands, see: Dvorkin et al. (1990a ,b ); Lampeka et al. (1989); Skopenko et al. (1990); Sachse et al. (2008); Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012). For metal complexes of 2-cyano-2-(hy­droxy­imino)­acetic acid, see: Sliva et al. (1998); Mokhir et al. (2002); Eddings et al. (2004). For related structures, see: Duda et al. (1997); Fritsky et al. (2004); Onindo et al. (1995); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Kovbasyuk et al. (2004). For the synthesis of the ligand, see: Sliva et al. (1998).graphic file with name e-68-m1303-scheme1.jpg

Experimental  

Crystal data  

  • [CuK2(C3N2O3)2(H2O)3]

  • M r = 419.89

  • Monoclinic, Inline graphic

  • a = 8.767 (2) Å

  • b = 12.426 (3) Å

  • c = 13.159 (5) Å

  • β = 108.26 (3)°

  • V = 1361.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.24 × 0.16 × 0.07 mm

Data collection  

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.657, T max = 0.859

  • 9166 measured reflections

  • 3189 independent reflections

  • 3006 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.062

  • S = 1.09

  • 3189 reflections

  • 205 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036641/hp2047sup1.cif

e-68-m1303-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036641/hp2047Isup2.hkl

e-68-m1303-Isup2.hkl (156.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O3A i 0.89 1.85 2.7257 (19) 171
O1W—H21W⋯O3ii 0.80 1.96 2.6910 (19) 151
O2W—H12W⋯O1iii 0.81 2.19 2.993 (2) 173
O2W—H22W⋯O3A i 0.92 2.02 2.926 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041), the Russian Fund for Basic Research (grants11–03-00262 and 11–03-90417) and the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010).

supplementary crystallographic information

Comment

Many reported mononuclear complexes of 3 d-metals contains vacant donor atoms or chelate centers, so that they can be considered as ligands for preparation of homo- and heteropolynuclear systems which are widely used in bioinorganic modeling, catalysis and in molecular magnetism (Kahn, 1993; Goodwin et al., 2000; Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Wörl et al., 2005). Polydentate ligands containing oxime and carboxylic groups attract particular attention due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Skopenko et al., 1990; Sachse et al., 2008; Moroz et al., 2008, 2010, 2012) and for preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3 d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006). 2-cyano-2-(hydroxyimino)acetic acid (aaco) is an efficient chelating ligand for Cu(II) and Ni(II) ions (Sliva et al., 1998; Mokhir et al., 2002). To date, only one heterometallic complex containing this ligand K2[Pd(aaco-2H)2].4H2O has been structurally characterized (Eddings et al., 2004). Herein we report the second heterometallic complex based on 2-cyan-2-hydroxyiminoacetic acid.

The title compound, [K2Cu(C3N2O3)2(H2O)3]n, has an ionic structure containing 2- charged Cu(II)-centered complex anions, potassium cations and water molecules (Fig. 1). The Cu atom is in a distorted square-pyramidal geometry, defined by two N atoms belonging to the oxime groups and two O atoms belonging to the carboxylic groups of two trans-disposed doubly deprotonated residues of 2-cyano-2-(hydroxyimino)acetic acid. The apical position is occupied by the water molecule O1W which also serves as a bridge between Cu1 and K1 ions. The coordination bond lengths Cu—N and Cu—O (Table 1) are typical for square-pyramidal Cu(II) complexes with deprotonated oxime and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. O2—Cu1—N1 = 82.89 (6)°], which is a consequence of the formation of five-membered chelate rings. The bond lengths C—O, N—O and C—N in the coordinated 2-oximinocarboxylate ligand are typical for copper(II) complexes with cyanoximes and carboxylates (Onindo et al., 1995; Duda et al., 1997; Fritsky et al., 2004;).

The potassium cations K1 and K2 are bound to the copper(II) complex anion in a chelate fashion via the oxime oxygen (O1A and O1, respectively) and the carboxylic oxygen (O2 and O2A, respectively) atoms. Such coordination of two potassium cations from the different side of the complex anion results in a closed metallamacrocylic framework. Both potassium cations also forms additional K—O and K—N contacts with the carboxylic and the oxime O atoms and the nitrile N atoms of the neighboring Cu complex anions thus uniting them in a three-dimensional framework (Fig. 2). The environments of K1 and K2 potassium cation are complemented to octa- and nona-coordinated, respectively, by K—O contacts with H2O molecules. The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of the carboxylate and the oximate complexes (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Kovbasyuk et al., 20040). The crystal structure involves intermolecular O—H···O hydrogen bonds where the water molecules act as donors, and the carboxylic and the oxime O atoms act as acceptors (Table 2).

Experimental

Cu(NO3)2.3H2O (0.242 g, 1 mmol) was dissolved in water (3 ml) and added to the methanolic solution (15 ml) of 2-cyano-2-(hydroxyimino)acetic acid (0.228 g, 2 mmol), synthesizsed according to Sliva et al., 1998). To the obtained mixture, aqueous solution of potassium hydroxide (1M, 4 ml) was added with vigorous stirring at room temperature. The obtained transparent solution was stirred 20 min. and then set aside for crystallization at ambient temperature. Bright brown crystals were separated by filtration after 72 h, washed with cold water (10 ml) and dried (yield 78%). Analysis calculated for C6H6Cu K2N4O9: C 17.16, H 1.44, N 13.34%; found: C 17.10, H 1.53, N 13.42%.

Refinement

The H atoms of the water molecule were located at the difference Fourier map and their coordinates were allowed to ride on the coordinates of the parent atom with Uiso(H) = 1.5Ueq.

Figures

Fig. 1.

Fig. 1.

A view of compound (I), with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z; (iv) x - 1, -y + 1/2, z - 1/2; (v) -x + 1, y + 1/2, -z + 1/2; (vi) x + 1, -y + 3/2, z + 1/2; (vii) -x + 2, y + 1/2, -z + 1/2.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines.

Crystal data

[CuK2(C3N2O3)2(H2O)3] F(000) = 836
Mr = 419.89 Dx = 2.049 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3744 reflections
a = 8.767 (2) Å θ = 1.0–27.5°
b = 12.426 (3) Å µ = 2.27 mm1
c = 13.159 (5) Å T = 100 K
β = 108.26 (3)° Block, brown
V = 1361.3 (7) Å3 0.24 × 0.16 × 0.07 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 3189 independent reflections
Radiation source: fine-focus sealed tube 3006 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
ω scans θmax = 28.4°, θmin = 3.7°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.657, Tmax = 0.859 k = −15→15
9166 measured reflections l = −14→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.028P)2 + 0.9392P] where P = (Fo2 + 2Fc2)/3
3189 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.56 e Å3
4 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.53009 (2) 0.529307 (15) 0.136932 (15) 0.00981 (7)
K1 0.10262 (4) 0.38634 (3) −0.06404 (3) 0.01425 (9)
K2 0.86027 (5) 0.61378 (3) 0.38164 (3) 0.01645 (9)
O1 0.86577 (14) 0.45133 (10) 0.22512 (10) 0.0138 (2)
O1A 0.20044 (14) 0.60207 (10) 0.03346 (10) 0.0151 (2)
O2 0.41091 (14) 0.39928 (10) 0.08061 (10) 0.0139 (2)
O2A 0.65548 (14) 0.66325 (10) 0.16771 (9) 0.0117 (2)
O3 0.43256 (15) 0.22059 (10) 0.09720 (10) 0.0160 (3)
O3A 0.61938 (14) 0.84124 (10) 0.16679 (10) 0.0140 (2)
O1W 0.52488 (16) 0.52800 (10) 0.30436 (10) 0.0160 (3)
H11W 0.4781 (7) 0.4699 (8) 0.3201 (2) 0.024*
H21W 0.5029 (3) 0.5835 (8) 0.3278 (3) 0.024*
O2W 0.10231 (16) 0.33982 (12) 0.13939 (11) 0.0205 (3)
H12W 0.0333 (11) 0.3648 (4) 0.1612 (4) 0.031*
H22W 0.1900 (14) 0.3541 (3) 0.1987 (10) 0.031*
O3W 0.89136 (15) 0.65821 (11) 0.59001 (11) 0.0194 (3)
H13W 0.8132 (13) 0.6471 (2) 0.6103 (4) 0.029*
H23W 0.9754 (14) 0.6349 (4) 0.6428 (9) 0.029*
N1 0.71631 (17) 0.42739 (12) 0.18069 (11) 0.0111 (3)
N1A 0.34617 (17) 0.62774 (12) 0.07855 (11) 0.0113 (3)
N2 0.86325 (19) 0.16875 (13) 0.23004 (13) 0.0203 (3)
N2A 0.19141 (19) 0.88673 (13) 0.03683 (13) 0.0186 (3)
C1 0.7741 (2) 0.23825 (14) 0.20181 (13) 0.0125 (3)
C1A 0.2811 (2) 0.81670 (14) 0.06281 (13) 0.0128 (3)
C2 0.66627 (19) 0.32726 (14) 0.16742 (13) 0.0111 (3)
C2A 0.3926 (2) 0.72992 (14) 0.09515 (13) 0.0114 (3)
C3 0.4904 (2) 0.31178 (13) 0.11168 (13) 0.0114 (3)
C3A 0.5671 (2) 0.74813 (14) 0.14657 (13) 0.0109 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.00914 (11) 0.00802 (11) 0.01111 (11) 0.00006 (7) 0.00152 (8) −0.00062 (7)
K1 0.01241 (17) 0.01672 (18) 0.01307 (17) −0.00156 (13) 0.00320 (13) −0.00110 (13)
K2 0.01638 (18) 0.01814 (19) 0.01222 (17) 0.00000 (14) 0.00070 (14) −0.00195 (13)
O1 0.0092 (5) 0.0152 (6) 0.0157 (6) −0.0015 (4) 0.0020 (5) −0.0016 (5)
O1A 0.0103 (6) 0.0166 (6) 0.0168 (6) −0.0026 (5) 0.0019 (5) −0.0013 (5)
O2 0.0106 (5) 0.0111 (6) 0.0173 (6) 0.0003 (4) 0.0006 (5) −0.0008 (4)
O2A 0.0103 (5) 0.0101 (5) 0.0142 (6) 0.0007 (4) 0.0029 (4) 0.0002 (4)
O3 0.0155 (6) 0.0104 (6) 0.0197 (6) −0.0020 (5) 0.0021 (5) −0.0001 (5)
O3A 0.0138 (6) 0.0112 (6) 0.0165 (6) −0.0003 (5) 0.0037 (5) −0.0016 (5)
O1W 0.0230 (7) 0.0095 (6) 0.0175 (6) −0.0016 (5) 0.0093 (5) −0.0011 (4)
O2W 0.0131 (6) 0.0311 (7) 0.0163 (6) 0.0019 (5) 0.0033 (5) −0.0007 (5)
O3W 0.0145 (6) 0.0269 (7) 0.0169 (6) 0.0023 (5) 0.0049 (5) 0.0017 (5)
N1 0.0110 (6) 0.0134 (7) 0.0088 (6) 0.0010 (5) 0.0030 (5) −0.0006 (5)
N1A 0.0103 (6) 0.0138 (7) 0.0098 (6) −0.0007 (5) 0.0034 (5) −0.0002 (5)
N2 0.0195 (8) 0.0178 (8) 0.0200 (8) 0.0028 (6) 0.0010 (6) 0.0000 (6)
N2A 0.0147 (7) 0.0180 (8) 0.0212 (8) 0.0026 (6) 0.0029 (6) 0.0006 (6)
C1 0.0118 (7) 0.0140 (8) 0.0103 (7) −0.0018 (6) 0.0015 (6) −0.0009 (6)
C1A 0.0120 (7) 0.0149 (8) 0.0110 (7) −0.0017 (6) 0.0028 (6) −0.0017 (6)
C2 0.0115 (7) 0.0123 (7) 0.0093 (7) 0.0009 (6) 0.0030 (6) 0.0000 (6)
C2A 0.0117 (8) 0.0131 (8) 0.0094 (7) 0.0021 (6) 0.0036 (6) 0.0000 (6)
C3 0.0111 (7) 0.0140 (8) 0.0085 (7) −0.0004 (6) 0.0023 (6) 0.0006 (6)
C3A 0.0112 (7) 0.0139 (8) 0.0080 (7) 0.0014 (6) 0.0038 (6) 0.0008 (6)

Geometric parameters (Å, º)

Cu1—O2 1.9407 (14) O2—C3 1.287 (2)
Cu1—O2A 1.9656 (14) O2A—C3A 1.287 (2)
Cu1—N1A 1.9774 (16) O2A—K1iii 2.9244 (15)
Cu1—N1 2.0029 (16) O3—C3 1.231 (2)
Cu1—O1W 2.2181 (15) O3—K2ii 2.9795 (16)
K1—O2W 2.7395 (17) O3A—C3A 1.242 (2)
K1—O2 2.7803 (16) O1W—H11W 0.8863
K1—O1Ai 2.8128 (14) O1W—H21W 0.8027
K1—O3Wii 2.8578 (16) O2W—K2ii 2.8513 (17)
K1—O2Aiii 2.9244 (15) O2W—H12W 0.8088
K1—N2iv 2.941 (2) O2W—H22W 0.9250
K1—O1A 2.9795 (16) O3W—K1v 2.8578 (16)
K1—O1iii 3.0011 (16) O3W—H13W 0.8215
K2—O3W 2.7255 (17) O3W—H23W 0.8882
K2—O2Wv 2.8513 (17) N1—C2 1.313 (2)
K2—O2A 2.8911 (18) N1—K1iii 3.4294 (18)
K2—O1 2.8951 (16) N1A—C2A 1.330 (2)
K2—O3v 2.9795 (16) N2—C1 1.146 (2)
K2—N2Avi 2.981 (2) N2—K1viii 2.941 (2)
K2—O1W 2.9904 (17) N2—K2ix 3.2763 (19)
K2—N2Aii 3.1018 (19) N2A—C1A 1.151 (2)
K2—N2vii 3.2763 (19) N2A—K2x 2.981 (2)
K2—N1 3.444 (2) N2A—K2v 3.1018 (18)
O1—N1 1.2911 (19) C1—C2 1.433 (2)
O1—K1iii 3.0011 (16) C1A—C2A 1.428 (2)
O1A—N1A 1.2692 (19) C2—C3 1.498 (2)
O1A—K1i 2.8128 (14) C2A—C3A 1.483 (2)
O2—Cu1—O2A 169.44 (5) O2Wv—K2—N2vii 68.12 (5)
O2—Cu1—N1A 95.20 (6) O2A—K2—N2vii 80.79 (5)
O2A—Cu1—N1A 83.78 (6) O1—K2—N2vii 69.31 (5)
O2—Cu1—N1 82.89 (6) O3v—K2—N2vii 136.83 (4)
O2A—Cu1—N1 97.08 (6) N2Avi—K2—N2vii 66.99 (5)
N1A—Cu1—N1 174.16 (6) O1W—K2—N2vii 135.12 (4)
O2—Cu1—O1W 101.37 (6) N2Aii—K2—N2vii 123.61 (5)
O2A—Cu1—O1W 89.19 (6) O3W—K2—Cu1 136.80 (4)
N1A—Cu1—O1W 97.03 (6) O2Wv—K2—Cu1 105.92 (4)
N1—Cu1—O1W 88.76 (6) O2A—K2—Cu1 31.24 (3)
O2—Cu1—K2 137.80 (4) O1—K2—Cu1 51.18 (3)
O2A—Cu1—K2 49.71 (4) O3v—K2—Cu1 75.44 (4)
N1A—Cu1—K2 118.52 (5) N2Avi—K2—Cu1 156.01 (4)
N1—Cu1—K2 65.73 (5) O1W—K2—Cu1 36.34 (3)
O1W—Cu1—K2 53.03 (4) N2Aii—K2—Cu1 83.40 (5)
O2—Cu1—K1iii 122.19 (4) N2vii—K2—Cu1 98.86 (4)
O2A—Cu1—K1iii 49.64 (4) N1—K2—Cu1 32.02 (3)
N1A—Cu1—K1iii 112.66 (5) O3W—K2—K1v 43.95 (4)
N1—Cu1—K1iii 64.30 (5) O2Wv—K2—K1v 41.71 (3)
O1W—Cu1—K1iii 122.53 (4) O2A—K2—K1v 107.77 (4)
K2—Cu1—K1iii 69.53 (3) O1—K2—K1v 167.26 (3)
O2W—K1—O2 69.00 (5) O3v—K2—K1v 59.37 (4)
O2W—K1—O1Ai 65.22 (5) N2Avi—K2—K1v 73.70 (5)
O2—K1—O1Ai 131.17 (4) O1W—K2—K1v 112.48 (4)
O2W—K1—O3Wii 85.02 (5) N2Aii—K2—K1v 122.80 (4)
O2—K1—O3Wii 95.09 (5) N2vii—K2—K1v 98.98 (4)
O1Ai—K1—O3Wii 96.98 (5) N1—K2—K1v 161.23 (3)
O2W—K1—O2Aiii 129.37 (5) Cu1—K2—K1v 129.25 (3)
O2—K1—O2Aiii 68.90 (4) O3W—K2—H21W 91.8
O1Ai—K1—O2Aiii 158.93 (4) O2Wv—K2—H21W 104.1
O3Wii—K1—O2Aiii 72.05 (4) O2A—K2—H21W 61.0
O2W—K1—N2iv 129.21 (5) O1—K2—H21W 89.6
O2—K1—N2iv 154.70 (5) O3v—K2—H21W 38.2
O1Ai—K1—N2iv 73.17 (5) N2Avi—K2—H21W 151.5
O3Wii—K1—N2iv 72.16 (5) O1W—K2—H21W 15.4
O2Aiii—K1—N2iv 86.19 (5) N2Aii—K2—H21W 73.4
O2W—K1—O1A 81.80 (5) N2vii—K2—H21W 141.4
O2—K1—O1A 64.30 (5) N1—K2—H21W 68.4
O1Ai—K1—O1A 92.85 (4) Cu1—K2—H21W 45.2
O3Wii—K1—O1A 158.48 (4) K1v—K2—H21W 97.3
O2Aiii—K1—O1A 103.74 (4) N1—O1—K2 104.00 (9)
N2iv—K1—O1A 129.20 (5) N1—O1—K1iii 98.06 (9)
O2W—K1—O1iii 149.39 (4) K2—O1—K1iii 93.42 (5)
O2—K1—O1iii 99.18 (5) N1A—O1A—K1i 141.06 (10)
O1Ai—K1—O1iii 111.53 (5) N1A—O1A—K1 122.63 (10)
O3Wii—K1—O1iii 124.96 (4) K1i—O1A—K1 87.15 (4)
O2Aiii—K1—O1iii 64.61 (4) C3—O2—Cu1 114.14 (11)
N2iv—K1—O1iii 72.71 (5) C3—O2—K1 118.81 (10)
O1A—K1—O1iii 67.77 (4) Cu1—O2—K1 126.95 (6)
O2W—K1—Cu1iii 124.58 (4) C3A—O2A—Cu1 112.93 (11)
O2—K1—Cu1iii 55.64 (4) C3A—O2A—K2 122.22 (10)
O1Ai—K1—Cu1iii 159.87 (3) Cu1—O2A—K2 99.04 (6)
O3Wii—K1—Cu1iii 101.26 (4) C3A—O2A—K1iii 123.20 (10)
O2Aiii—K1—Cu1iii 30.81 (3) Cu1—O2A—K1iii 99.55 (5)
N2iv—K1—Cu1iii 104.42 (4) K2—O2A—K1iii 95.14 (5)
O1A—K1—Cu1iii 72.96 (4) C3—O3—K2ii 136.08 (11)
O1iii—K1—Cu1iii 50.26 (3) Cu1—O1W—K2 90.63 (5)
N1iii—K1—Cu1iii 31.75 (3) Cu1—O1W—H11W 113.2
O2W—K1—K1i 66.33 (4) K2—O1W—H11W 133.5
O2—K1—K1i 98.05 (4) Cu1—O1W—H21W 117.2
O1Ai—K1—K1i 48.16 (3) K2—O1W—H21W 83.8
O3Wii—K1—K1i 141.22 (3) H11W—O1W—H21W 115.1
O2Aiii—K1—K1i 146.54 (3) K1—O2W—K2ii 94.45 (5)
N2iv—K1—K1i 105.52 (5) K1—O2W—H12W 119.7
O1A—K1—K1i 44.69 (3) K2ii—O2W—H12W 122.3
O1iii—K1—K1i 88.64 (4) K1—O2W—H22W 122.0
N1iii—K1—K1i 92.55 (3) K2ii—O2W—H22W 100.4
Cu1iii—K1—K1i 116.27 (3) H12W—O2W—H22W 98.2
O2W—K1—K2ii 43.83 (4) K2—O3W—K1v 94.61 (5)
O2—K1—K2ii 76.44 (4) K2—O3W—H13W 117.5
O1Ai—K1—K2ii 82.18 (4) K1v—O3W—H13W 104.7
O3Wii—K1—K2ii 41.44 (3) K2—O3W—H23W 121.2
O2Aiii—K1—K2ii 99.36 (4) K1v—O3W—H23W 112.0
N2iv—K1—K2ii 104.45 (5) H13W—O3W—H23W 105.3
O1A—K1—K2ii 122.09 (4) O1—N1—C2 121.88 (14)
O1iii—K1—K2ii 163.67 (3) O1—N1—Cu1 127.20 (11)
N1iii—K1—K2ii 148.83 (3) C2—N1—Cu1 110.65 (11)
Cu1iii—K1—K2ii 117.31 (3) O1—N1—K1iii 60.05 (8)
K1i—K1—K2ii 107.48 (3) C2—N1—K1iii 139.68 (11)
O3W—K2—O2Wv 85.40 (5) Cu1—N1—K1iii 83.94 (5)
O3W—K2—O2A 140.56 (4) O1—N1—K2 54.66 (8)
O2Wv—K2—O2A 75.60 (5) C2—N1—K2 140.04 (11)
O3W—K2—O1 146.95 (4) Cu1—N1—K2 82.25 (5)
O2Wv—K2—O1 126.14 (4) K1iii—N1—K2 77.30 (4)
O2A—K2—O1 66.37 (5) O1A—N1A—C2A 121.87 (15)
O3W—K2—O3v 68.49 (5) O1A—N1A—Cu1 127.23 (12)
O2Wv—K2—O3v 72.48 (4) C2A—N1A—Cu1 110.87 (11)
O2A—K2—O3v 72.90 (5) C1—N2—K1viii 133.74 (14)
O1—K2—O3v 125.73 (4) C1—N2—K2ix 122.50 (13)
O3W—K2—N2Avi 62.76 (5) K1viii—N2—K2ix 87.14 (5)
O2Wv—K2—N2Avi 87.22 (5) C1A—N2A—K2x 129.07 (13)
O2A—K2—N2Avi 147.35 (5) C1A—N2A—K2v 138.19 (13)
O1—K2—N2Avi 104.84 (5) K2x—N2A—K2v 91.29 (6)
O3v—K2—N2Avi 128.30 (5) N2—C1—C2 178.38 (19)
O3W—K2—O1W 101.07 (5) N2A—C1A—C2A 179.9 (3)
O2Wv—K2—O1W 116.68 (5) N1—C2—C1 121.99 (15)
O2A—K2—O1W 60.02 (4) N1—C2—C3 115.90 (15)
O1—K2—O1W 75.13 (5) C1—C2—C3 122.10 (15)
O3v—K2—O1W 53.59 (4) N1A—C2A—C1A 121.76 (15)
N2Avi—K2—O1W 151.06 (4) N1A—C2A—C3A 116.05 (15)
O3W—K2—N2Aii 79.38 (5) C1A—C2A—C3A 122.17 (15)
O2Wv—K2—N2Aii 164.43 (4) O3—C3—O2 124.94 (15)
O2A—K2—N2Aii 114.63 (5) O3—C3—C2 120.30 (15)
O1—K2—N2Aii 69.43 (5) O2—C3—C2 114.75 (15)
O3v—K2—N2Aii 98.59 (5) O3A—C3A—O2A 124.08 (15)
N2Avi—K2—N2Aii 88.71 (6) O3A—C3A—C2A 119.89 (15)
O1W—K2—N2Aii 63.82 (5) O2A—C3A—C2A 116.03 (15)
O3W—K2—N2vii 123.65 (5)
O2—Cu1—O2A—C3A 90.4 (3) O1—N1—C2—C3 −178.21 (13)
N1A—Cu1—O2A—C3A 5.42 (11) Cu1—N1—C2—C3 7.32 (17)
N1—Cu1—O2A—C3A 179.61 (11) O1A—N1A—C2A—C1A −0.2 (2)
O1W—Cu1—O2A—C3A −91.74 (11) Cu1—N1A—C2A—C1A −178.39 (12)
O2—Cu1—N1—O1 175.68 (13) O1A—N1A—C2A—C3A −178.72 (14)
O2A—Cu1—N1—O1 6.32 (14) Cu1—O2—C3—O3 170.18 (14)
O1W—Cu1—N1—O1 −82.70 (13) Cu1—O2—C3—C2 −10.95 (18)
O2—Cu1—N1—C2 −10.22 (11) N1—C2—C3—O3 −178.94 (15)
O2A—Cu1—N1—C2 −179.58 (11) C1—C2—C3—O3 2.5 (2)
O1W—Cu1—N1—C2 91.39 (12) N1—C2—C3—O2 2.1 (2)
O2—Cu1—N1A—O1A 7.99 (14) C1—C2—C3—O2 −176.39 (15)
O2A—Cu1—N1A—O1A 177.43 (14) Cu1—O2A—C3A—O3A 174.67 (13)
O1W—Cu1—N1A—O1A −94.17 (14) Cu1—O2A—C3A—C2A −5.14 (17)
O2—Cu1—N1A—C2A −173.99 (11) N1A—C2A—C3A—O3A −178.48 (14)
O2A—Cu1—N1A—C2A −4.55 (11) C1A—C2A—C3A—O3A 3.0 (2)
O1W—Cu1—N1A—C2A 83.86 (12) N1A—C2A—C3A—O2A 1.3 (2)
O1—N1—C2—C1 0.3 (2) C1A—C2A—C3A—O2A −177.14 (14)
Cu1—N1—C2—C1 −174.16 (12)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z; (iv) x−1, −y+1/2, z−1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x+1, −y+3/2, z+1/2; (vii) −x+2, y+1/2, −z+1/2; (viii) x+1, −y+1/2, z+1/2; (ix) −x+2, y−1/2, −z+1/2; (x) x−1, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H11W···O3Aii 0.89 1.85 2.7257 (19) 171
O1W—H21W···O3v 0.80 1.96 2.6910 (19) 151
O2W—H12W···O1xi 0.81 2.19 2.993 (2) 173
O2W—H22W···O3Aii 0.92 2.02 2.926 (2) 164

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (xi) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2047).

References

  1. Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  3. Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.
  4. Dvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, 310, 87–90.
  5. Dvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98–101.
  6. Eddings, D., Barnes, C., Gerasimchuk, N., Durham, P. & Domasevich, K. (2004). Inorg. Chem. 43, 3894–3909. [DOI] [PubMed]
  7. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun pp. 4125–4127. [DOI] [PubMed]
  8. Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  9. Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231. [DOI] [PubMed]
  10. Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.
  11. Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.
  12. Goodwin, J. C., Sessoli, R. & Gatteschi, D. (2000). J. Chem. Soc. Dalton Trans. pp. 1835–1840.
  13. Kahn, O. (1993). In Molecular Magnetism New York: VCH.
  14. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  15. Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun pp. 880–881. [DOI] [PubMed]
  16. Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.
  17. Lampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458–461.
  18. Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  19. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  20. Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665. [DOI] [PubMed]
  21. Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. [DOI] [PubMed]
  22. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  23. Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.
  24. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  25. Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Skopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.
  28. Sliva, T. Y., Dobosz, A., Jerzykiewicz, L., Karaczyn, A., Moreeuw, A. M., Świątek-Kozłowska, J., Głowiak, T. & Kozłowski, H. (1998). J. Chem. Soc. Dalton Trans. pp. 1863–1868.
  29. Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.
  30. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
  31. Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812036641/hp2047sup1.cif

e-68-m1303-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036641/hp2047Isup2.hkl

e-68-m1303-Isup2.hkl (156.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES