Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):o2823. doi: 10.1107/S1600536812036926

N-(3,5-Dimethyl­phen­yl)-2-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3470185  PMID: 23125629

Abstract

The asymmetric unit of the title compound, C14H14N2O4S, consists of two crystallographically independent mol­ecules. The mol­ecules are twisted at the S—N bonds with C—S—N—C torsion angles of 44.2 (3) and −49.3 (3)°. The dihedral angles between the benzene rings in the two mol­ecules are 71.53 (7) and 72.11 (7)°. The amide H atoms exhibit bifurcated intra- and inter­molecular hydrogen bonds; the intra­molecular N—H⋯O(N) hydrogen bonds generate S(7) motifs. In the crystal, the independent mol­ecules are separately connected through the inter­molecular N—H⋯O(S) hydrogen bonds, generating a C(4) motif and a helical chain along the b axis for one mol­ecule and an R 2 2(8) motif and an inversion dimer for the other. The crystal studied was a pseudo-merohedral twin with twin law (-100/0-10/001), the refined ratio of the twin domains being 0.7876 (12):0.2124 (12).

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-aryl­sulfonamides, see: Chaithanya et al. (2012) and of N-chloro­aryl­sulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001),graphic file with name e-68-o2823-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O4S

  • M r = 306.33

  • Monoclinic, Inline graphic

  • a = 16.561 (1) Å

  • b = 8.1611 (6) Å

  • c = 21.476 (2) Å

  • β = 90.056 (7)°

  • V = 2902.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.894, T max = 0.954

  • 12941 measured reflections

  • 5929 independent reflections

  • 4004 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.123

  • S = 1.00

  • 5929 reflections

  • 390 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036926/is5184sup1.cif

e-68-o2823-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036926/is5184Isup2.hkl

e-68-o2823-Isup2.hkl (290.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036926/is5184Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.40 (2) 3.089 (3) 142 (3)
N1—H1N⋯O3 0.82 (2) 2.52 (3) 2.893 (4) 109 (2)
N3—H3N⋯O7 0.83 (2) 2.42 (3) 2.963 (3) 124 (3)
N3—H3N⋯O6ii 0.83 (2) 2.54 (2) 3.195 (3) 136 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

UC thanks Mangalore University for award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012), N-arylsulfonamides (Chaithanya et al., 2012) and N-chloroarylsulfonamides (Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide has been determined.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1). The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsions with respect to the S═O bonds, similar to that observed in N-(3-methylphenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-nitro group in the sulfonyl benzene ring. The molecules are twisted at the S—N bonds with C1—S1—N1—C7 and C15—S2—N3—C21 torsion angles of 44.2 (3) and -49.3 (3)°, respectively, compared to the value of 46.97 (16)° in (I). The dihedral angles between the sulfonyl and the anilino rings in the two molecules are 71.53 (7) and 72.11 (7)°, compared to the value of 73.64 (7)° in (I). In each molecule the amide H atom shows an intramolecular hydrogen bond (N1—H1N···O1 and N3—H3N···O7; Table 1) with the O atom of the ortho-nitro group in the sulfonyl benzene ring, generating an S(7) motif (Adsmond et al., 2001). In the crystal, the amide H atoms show intermolecular hydrogen bonds with the sulfonyl oxygen atoms of the other molecule; the N1—H1N···O1i hydrogen bond (symmetry code in Table 1) generates a C(4) motif and a helical chain along the b axis, while the N3—H3N···O6ii hydrogen bond (symmetry code in Table 1) an R22(8) motif and an inversion dimer. A part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 3,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid, N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra. Prism like brown single crystals of the title compound suitable for X-ray diffraction studies were grown in an ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. The positions of amino H atoms were refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N) and 1.5Ueq (C-methyl). Rigid-bond restraints (DELU) were applied for atom paris of C18/C19, N2/C2, O3/N2 and N4/C16. The crystal was refined with the twin law (-1 0 0/0 -1 0/0 0 1).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H···O hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

A molecular packing diagram of the title compound with the N—H···O hydrogen bonds shown as dashed lines.

Crystal data

C14H14N2O4S F(000) = 1280
Mr = 306.33 Dx = 1.402 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2953 reflections
a = 16.561 (1) Å θ = 2.5–27.9°
b = 8.1611 (6) Å µ = 0.24 mm1
c = 21.476 (2) Å T = 293 K
β = 90.056 (7)° Prism, brown
V = 2902.6 (4) Å3 0.48 × 0.40 × 0.20 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 5929 independent reflections
Radiation source: fine-focus sealed tube 4004 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −20→20
Tmin = 0.894, Tmax = 0.954 k = −10→5
12941 measured reflections l = −19→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0703P)2] where P = (Fo2 + 2Fc2)/3
5929 reflections (Δ/σ)max = 0.006
390 parameters Δρmax = 0.32 e Å3
6 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.10145 (4) 0.28567 (9) 0.27572 (3) 0.0436 (2)
O1 0.09244 (13) 0.4509 (3) 0.25622 (10) 0.0612 (6)
O2 0.13065 (14) 0.1683 (3) 0.23195 (10) 0.0648 (6)
O3 0.11511 (16) −0.0493 (3) 0.33802 (14) 0.0830 (8)
O4 0.23948 (19) −0.1115 (4) 0.34483 (18) 0.1090 (11)
N1 0.01449 (14) 0.2232 (3) 0.30039 (11) 0.0451 (6)
H1N 0.0052 (18) 0.127 (2) 0.2925 (14) 0.054*
N2 0.18483 (18) −0.0130 (3) 0.34824 (13) 0.0597 (7)
C1 0.16894 (15) 0.2911 (3) 0.34040 (13) 0.0390 (6)
C2 0.20431 (17) 0.1548 (4) 0.36690 (13) 0.0459 (7)
C3 0.26122 (18) 0.1709 (5) 0.41434 (16) 0.0614 (9)
H3 0.2854 0.0785 0.4315 0.074*
C4 0.2813 (2) 0.3250 (6) 0.43555 (16) 0.0657 (10)
H4 0.3182 0.3364 0.4680 0.079*
C5 0.24775 (18) 0.4600 (5) 0.40949 (17) 0.0634 (10)
H5 0.2625 0.5635 0.4236 0.076*
C6 0.19187 (17) 0.4449 (4) 0.36223 (14) 0.0513 (8)
H6 0.1692 0.5384 0.3447 0.062*
C7 −0.02146 (14) 0.2819 (3) 0.35635 (13) 0.0374 (6)
C8 −0.02904 (17) 0.4483 (4) 0.36658 (14) 0.0454 (7)
H8 −0.0092 0.5225 0.3375 0.054*
C9 −0.06662 (18) 0.5047 (4) 0.42075 (16) 0.0542 (8)
C10 −0.0970 (2) 0.3898 (4) 0.46210 (15) 0.0592 (9)
H10 −0.1228 0.4262 0.4980 0.071*
C11 −0.09039 (19) 0.2245 (4) 0.45202 (15) 0.0538 (8)
C12 −0.05146 (17) 0.1705 (4) 0.39875 (14) 0.0467 (7)
H12 −0.0455 0.0588 0.3915 0.056*
C13 −0.0759 (2) 0.6871 (4) 0.4317 (2) 0.0811 (12)
H13A −0.0327 0.7445 0.4114 0.122*
H13B −0.0741 0.7091 0.4756 0.122*
H13C −0.1267 0.7233 0.4151 0.122*
C14 −0.1251 (3) 0.1020 (5) 0.49760 (18) 0.0875 (13)
H14A −0.0820 0.0517 0.5206 0.131*
H14B −0.1545 0.0194 0.4753 0.131*
H14C −0.1608 0.1572 0.5258 0.131*
S2 0.40323 (4) 0.72449 (9) 0.02986 (3) 0.04244 (19)
O5 0.39955 (14) 0.8897 (2) 0.01021 (10) 0.0578 (6)
O6 0.38793 (14) 0.5967 (3) −0.01392 (9) 0.0610 (6)
O7 0.40738 (16) 0.3814 (3) 0.09201 (14) 0.0767 (7)
O8 0.28562 (16) 0.2925 (3) 0.08814 (15) 0.0886 (9)
N3 0.49231 (14) 0.6879 (3) 0.05761 (11) 0.0437 (6)
H3N 0.5007 (18) 0.588 (2) 0.0555 (14) 0.052*
N4 0.33469 (18) 0.4009 (3) 0.09653 (12) 0.0542 (6)
C15 0.33333 (15) 0.7097 (3) 0.09236 (13) 0.0386 (6)
C16 0.30457 (16) 0.5622 (4) 0.11719 (13) 0.0439 (7)
C17 0.24623 (18) 0.5593 (5) 0.16329 (15) 0.0552 (8)
H17 0.2266 0.4602 0.1784 0.066*
C18 0.21766 (18) 0.7054 (5) 0.18641 (17) 0.0616 (9)
H18 0.1798 0.7049 0.2183 0.074*
C19 0.24443 (18) 0.8513 (5) 0.16295 (16) 0.0593 (8)
H19 0.2243 0.9492 0.1787 0.071*
C20 0.30193 (17) 0.8538 (4) 0.11534 (14) 0.0489 (8)
H20 0.3191 0.9535 0.0991 0.059*
C21 0.52374 (15) 0.7656 (3) 0.11202 (12) 0.0343 (6)
C22 0.55543 (16) 0.6691 (4) 0.15836 (14) 0.0431 (7)
H22 0.5518 0.5557 0.1551 0.052*
C23 0.59271 (17) 0.7376 (4) 0.20976 (14) 0.0457 (7)
C24 0.59616 (17) 0.9071 (4) 0.21341 (14) 0.0486 (7)
H24 0.6207 0.9549 0.2479 0.058*
C25 0.56453 (16) 1.0072 (4) 0.16781 (15) 0.0452 (7)
C26 0.52802 (16) 0.9346 (4) 0.11635 (13) 0.0418 (7)
H26 0.5065 0.9996 0.0849 0.050*
C27 0.6301 (2) 0.6305 (4) 0.25904 (16) 0.0674 (10)
H27A 0.6015 0.5284 0.2611 0.101*
H27B 0.6271 0.6847 0.2986 0.101*
H27C 0.6856 0.6101 0.2488 0.101*
C28 0.5723 (2) 1.1911 (4) 0.17188 (19) 0.0668 (10)
H28A 0.5320 1.2333 0.1996 0.100*
H28B 0.5650 1.2380 0.1313 0.100*
H28C 0.6250 1.2189 0.1873 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0409 (4) 0.0553 (5) 0.0346 (4) −0.0001 (3) −0.0008 (3) 0.0018 (3)
O1 0.0596 (13) 0.0618 (14) 0.0622 (14) −0.0008 (11) 0.0025 (11) 0.0275 (12)
O2 0.0650 (14) 0.0870 (17) 0.0424 (12) 0.0065 (12) 0.0043 (11) −0.0184 (12)
O3 0.0751 (14) 0.0599 (15) 0.114 (2) −0.0024 (13) −0.0071 (16) −0.0043 (15)
O4 0.096 (2) 0.0755 (19) 0.156 (3) 0.0428 (17) 0.013 (2) 0.0038 (19)
N1 0.0412 (13) 0.0502 (15) 0.0438 (14) −0.0084 (12) −0.0014 (11) −0.0094 (13)
N2 0.0642 (14) 0.0532 (13) 0.0617 (17) 0.0132 (13) 0.0073 (14) 0.0081 (13)
C1 0.0330 (14) 0.0462 (17) 0.0378 (14) 0.0001 (13) 0.0039 (12) 0.0016 (14)
C2 0.0381 (15) 0.0598 (15) 0.0399 (15) 0.0035 (13) 0.0060 (13) 0.0067 (14)
C3 0.0425 (18) 0.092 (3) 0.0492 (19) 0.0106 (18) 0.0040 (15) 0.019 (2)
C4 0.0446 (18) 0.109 (3) 0.0433 (18) −0.014 (2) −0.0004 (15) −0.004 (2)
C5 0.0468 (19) 0.085 (3) 0.058 (2) −0.0163 (18) 0.0061 (17) −0.020 (2)
C6 0.0425 (16) 0.058 (2) 0.0534 (18) −0.0078 (15) 0.0032 (14) −0.0068 (16)
C7 0.0261 (13) 0.0455 (17) 0.0407 (15) 0.0015 (12) −0.0052 (11) −0.0030 (13)
C8 0.0401 (16) 0.0463 (19) 0.0497 (17) −0.0005 (13) −0.0039 (14) 0.0021 (14)
C9 0.0513 (18) 0.0493 (19) 0.062 (2) 0.0106 (15) −0.0108 (16) −0.0082 (17)
C10 0.058 (2) 0.072 (2) 0.0484 (18) 0.0116 (18) 0.0051 (17) −0.0093 (17)
C11 0.0498 (18) 0.067 (2) 0.0446 (17) 0.0013 (17) 0.0011 (15) 0.0028 (16)
C12 0.0428 (16) 0.0439 (18) 0.0535 (18) −0.0011 (13) −0.0032 (14) 0.0026 (15)
C13 0.088 (3) 0.062 (3) 0.093 (3) 0.020 (2) −0.008 (2) −0.017 (2)
C14 0.097 (3) 0.099 (3) 0.067 (2) −0.014 (2) 0.020 (2) 0.020 (2)
S2 0.0462 (4) 0.0507 (4) 0.0305 (3) −0.0034 (4) −0.0045 (3) 0.0018 (3)
O5 0.0634 (14) 0.0569 (13) 0.0531 (12) −0.0055 (11) −0.0033 (11) 0.0177 (10)
O6 0.0708 (15) 0.0708 (15) 0.0413 (11) −0.0095 (12) −0.0052 (11) −0.0146 (11)
O7 0.0674 (16) 0.0550 (15) 0.108 (2) 0.0121 (12) 0.0070 (15) 0.0038 (14)
O8 0.0862 (19) 0.0584 (16) 0.121 (2) −0.0242 (14) 0.0008 (18) −0.0154 (16)
N3 0.0415 (13) 0.0444 (15) 0.0452 (14) 0.0019 (12) 0.0028 (11) −0.0079 (12)
N4 0.0623 (17) 0.0468 (14) 0.0534 (16) −0.0029 (13) −0.0035 (14) 0.0078 (12)
C15 0.0324 (14) 0.0463 (17) 0.0369 (15) −0.0008 (13) −0.0066 (12) −0.0018 (13)
C16 0.0399 (15) 0.0520 (16) 0.0397 (16) −0.0037 (13) −0.0073 (13) 0.0024 (13)
C17 0.0470 (18) 0.068 (2) 0.0505 (19) −0.0107 (16) 0.0006 (15) 0.0065 (17)
C18 0.0378 (16) 0.094 (2) 0.0528 (19) −0.0051 (17) 0.0027 (15) −0.0098 (18)
C19 0.0414 (17) 0.0705 (19) 0.066 (2) 0.0048 (14) −0.0040 (16) −0.0244 (17)
C20 0.0416 (16) 0.0505 (19) 0.0546 (18) −0.0029 (14) −0.0067 (15) −0.0046 (15)
C21 0.0290 (13) 0.0364 (16) 0.0376 (14) −0.0023 (11) 0.0051 (11) 0.0011 (12)
C22 0.0425 (16) 0.0376 (16) 0.0494 (17) −0.0002 (12) 0.0025 (13) −0.0015 (14)
C23 0.0410 (15) 0.0537 (19) 0.0424 (16) 0.0004 (14) −0.0013 (14) 0.0041 (14)
C24 0.0442 (16) 0.0553 (19) 0.0464 (17) −0.0043 (14) −0.0043 (14) −0.0058 (15)
C25 0.0410 (16) 0.0407 (17) 0.0540 (18) −0.0055 (13) 0.0034 (14) −0.0028 (14)
C26 0.0359 (14) 0.0437 (18) 0.0458 (16) −0.0021 (12) 0.0015 (13) 0.0070 (14)
C27 0.071 (2) 0.073 (2) 0.058 (2) 0.0065 (19) −0.0150 (18) 0.0135 (18)
C28 0.072 (2) 0.046 (2) 0.083 (3) −0.0094 (16) −0.002 (2) −0.0081 (18)

Geometric parameters (Å, º)

S1—O1 1.420 (2) S2—O5 1.414 (2)
S1—O2 1.427 (2) S2—O6 1.427 (2)
S1—N1 1.617 (2) S2—N3 1.618 (2)
S1—C1 1.783 (3) S2—C15 1.777 (3)
O3—N2 1.212 (3) O7—N4 1.218 (3)
O4—N2 1.213 (3) O8—N4 1.215 (3)
N1—C7 1.425 (3) N3—C21 1.427 (3)
N1—H1N 0.819 (17) N3—H3N 0.832 (17)
N2—C2 1.463 (4) N4—C16 1.476 (4)
C1—C2 1.379 (4) C15—C20 1.378 (4)
C1—C6 1.392 (4) C15—C16 1.401 (4)
C2—C3 1.393 (4) C16—C17 1.384 (4)
C3—C4 1.378 (5) C17—C18 1.375 (5)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.355 (5) C18—C19 1.367 (5)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.378 (4) C19—C20 1.398 (5)
C5—H5 0.9300 C19—H19 0.9300
C6—H6 0.9300 C20—H20 0.9300
C7—C12 1.380 (4) C21—C22 1.373 (4)
C7—C8 1.381 (4) C21—C26 1.384 (4)
C8—C9 1.398 (4) C22—C23 1.382 (4)
C8—H8 0.9300 C22—H22 0.9300
C9—C10 1.386 (5) C23—C24 1.386 (4)
C9—C13 1.515 (4) C23—C27 1.506 (4)
C10—C11 1.370 (5) C24—C25 1.378 (4)
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.386 (4) C25—C26 1.392 (4)
C11—C14 1.513 (5) C25—C28 1.509 (4)
C12—H12 0.9300 C26—H26 0.9300
C13—H13A 0.9600 C27—H27A 0.9600
C13—H13B 0.9600 C27—H27B 0.9600
C13—H13C 0.9600 C27—H27C 0.9600
C14—H14A 0.9600 C28—H28A 0.9600
C14—H14B 0.9600 C28—H28B 0.9600
C14—H14C 0.9600 C28—H28C 0.9600
O1—S1—O2 118.60 (14) O5—S2—O6 119.54 (13)
O1—S1—N1 107.63 (13) O5—S2—N3 108.96 (13)
O2—S1—N1 107.85 (14) O6—S2—N3 105.60 (13)
O1—S1—C1 105.78 (13) O5—S2—C15 105.19 (13)
O2—S1—C1 108.50 (13) O6—S2—C15 109.43 (13)
N1—S1—C1 108.08 (12) N3—S2—C15 107.66 (12)
C7—N1—S1 122.89 (19) C21—N3—S2 123.45 (19)
C7—N1—H1N 115 (2) C21—N3—H3N 115 (2)
S1—N1—H1N 114 (2) S2—N3—H3N 108 (2)
O3—N2—O4 122.5 (3) O8—N4—O7 123.6 (3)
O3—N2—C2 119.2 (3) O8—N4—C16 117.9 (3)
O4—N2—C2 118.2 (3) O7—N4—C16 118.3 (3)
C2—C1—C6 118.2 (3) C20—C15—C16 118.0 (3)
C2—C1—S1 124.6 (2) C20—C15—S2 117.3 (2)
C6—C1—S1 117.1 (2) C16—C15—S2 124.6 (2)
C1—C2—C3 120.8 (3) C17—C16—C15 121.6 (3)
C1—C2—N2 123.2 (3) C17—C16—N4 115.9 (3)
C3—C2—N2 115.9 (3) C15—C16—N4 122.5 (3)
C4—C3—C2 119.4 (3) C18—C17—C16 119.0 (3)
C4—C3—H3 120.3 C18—C17—H17 120.5
C2—C3—H3 120.3 C16—C17—H17 120.5
C5—C4—C3 120.4 (3) C19—C18—C17 120.7 (3)
C5—C4—H4 119.8 C19—C18—H18 119.7
C3—C4—H4 119.8 C17—C18—H18 119.7
C4—C5—C6 120.4 (3) C18—C19—C20 120.3 (3)
C4—C5—H5 119.8 C18—C19—H19 119.9
C6—C5—H5 119.8 C20—C19—H19 119.9
C5—C6—C1 120.8 (3) C15—C20—C19 120.5 (3)
C5—C6—H6 119.6 C15—C20—H20 119.8
C1—C6—H6 119.6 C19—C20—H20 119.8
C12—C7—C8 120.7 (3) C22—C21—C26 120.2 (3)
C12—C7—N1 119.1 (3) C22—C21—N3 118.5 (2)
C8—C7—N1 120.2 (3) C26—C21—N3 121.1 (2)
C7—C8—C9 119.8 (3) C21—C22—C23 121.1 (3)
C7—C8—H8 120.1 C21—C22—H22 119.4
C9—C8—H8 120.1 C23—C22—H22 119.4
C10—C9—C8 118.2 (3) C22—C23—C24 117.8 (3)
C10—C9—C13 121.9 (3) C22—C23—C27 120.6 (3)
C8—C9—C13 119.9 (3) C24—C23—C27 121.5 (3)
C11—C10—C9 122.4 (3) C25—C24—C23 122.4 (3)
C11—C10—H10 118.8 C25—C24—H24 118.8
C9—C10—H10 118.8 C23—C24—H24 118.8
C10—C11—C12 118.7 (3) C24—C25—C26 118.5 (3)
C10—C11—C14 121.2 (3) C24—C25—C28 121.0 (3)
C12—C11—C14 120.1 (3) C26—C25—C28 120.4 (3)
C7—C12—C11 120.2 (3) C21—C26—C25 120.0 (3)
C7—C12—H12 119.9 C21—C26—H26 120.0
C11—C12—H12 119.9 C25—C26—H26 120.0
C9—C13—H13A 109.5 C23—C27—H27A 109.5
C9—C13—H13B 109.5 C23—C27—H27B 109.5
H13A—C13—H13B 109.5 H27A—C27—H27B 109.5
C9—C13—H13C 109.5 C23—C27—H27C 109.5
H13A—C13—H13C 109.5 H27A—C27—H27C 109.5
H13B—C13—H13C 109.5 H27B—C27—H27C 109.5
C11—C14—H14A 109.5 C25—C28—H28A 109.5
C11—C14—H14B 109.5 C25—C28—H28B 109.5
H14A—C14—H14B 109.5 H28A—C28—H28B 109.5
C11—C14—H14C 109.5 C25—C28—H28C 109.5
H14A—C14—H14C 109.5 H28A—C28—H28C 109.5
H14B—C14—H14C 109.5 H28B—C28—H28C 109.5
O1—S1—N1—C7 −69.6 (2) O5—S2—N3—C21 64.2 (3)
O2—S1—N1—C7 161.4 (2) O6—S2—N3—C21 −166.2 (2)
C1—S1—N1—C7 44.2 (3) C15—S2—N3—C21 −49.3 (3)
O1—S1—C1—C2 −168.8 (2) O5—S2—C15—C20 −10.3 (2)
O2—S1—C1—C2 −40.6 (3) O6—S2—C15—C20 −139.9 (2)
N1—S1—C1—C2 76.1 (3) N3—S2—C15—C20 105.8 (2)
O1—S1—C1—C6 6.1 (3) O5—S2—C15—C16 165.8 (2)
O2—S1—C1—C6 134.3 (2) O6—S2—C15—C16 36.2 (3)
N1—S1—C1—C6 −109.0 (2) N3—S2—C15—C16 −78.1 (2)
C6—C1—C2—C3 0.2 (4) C20—C15—C16—C17 0.2 (4)
S1—C1—C2—C3 175.0 (2) S2—C15—C16—C17 −175.8 (2)
C6—C1—C2—N2 179.6 (3) C20—C15—C16—N4 −179.3 (2)
S1—C1—C2—N2 −5.6 (4) S2—C15—C16—N4 4.7 (4)
O3—N2—C2—C1 −41.2 (4) O8—N4—C16—C17 43.4 (4)
O4—N2—C2—C1 140.3 (3) O7—N4—C16—C17 −132.8 (3)
O3—N2—C2—C3 138.3 (3) O8—N4—C16—C15 −137.1 (3)
O4—N2—C2—C3 −40.3 (4) O7—N4—C16—C15 46.7 (4)
C1—C2—C3—C4 1.0 (4) C15—C16—C17—C18 −1.9 (4)
N2—C2—C3—C4 −178.4 (3) N4—C16—C17—C18 177.6 (3)
C2—C3—C4—C5 −1.7 (5) C16—C17—C18—C19 2.1 (5)
C3—C4—C5—C6 1.3 (5) C17—C18—C19—C20 −0.6 (5)
C4—C5—C6—C1 0.0 (5) C16—C15—C20—C19 1.4 (4)
C2—C1—C6—C5 −0.7 (4) S2—C15—C20—C19 177.7 (2)
S1—C1—C6—C5 −175.9 (2) C18—C19—C20—C15 −1.2 (5)
S1—N1—C7—C12 −131.0 (2) S2—N3—C21—C22 128.6 (2)
S1—N1—C7—C8 51.7 (3) S2—N3—C21—C26 −56.2 (3)
C12—C7—C8—C9 0.7 (4) C26—C21—C22—C23 −0.6 (4)
N1—C7—C8—C9 178.0 (2) N3—C21—C22—C23 174.6 (2)
C7—C8—C9—C10 −1.5 (4) C21—C22—C23—C24 0.8 (4)
C7—C8—C9—C13 −179.3 (3) C21—C22—C23—C27 −177.6 (3)
C8—C9—C10—C11 0.9 (5) C22—C23—C24—C25 −0.5 (4)
C13—C9—C10—C11 178.7 (3) C27—C23—C24—C25 177.9 (3)
C9—C10—C11—C12 0.4 (5) C23—C24—C25—C26 −0.1 (4)
C9—C10—C11—C14 −179.2 (3) C23—C24—C25—C28 −177.4 (3)
C8—C7—C12—C11 0.6 (4) C22—C21—C26—C25 0.0 (4)
N1—C7—C12—C11 −176.7 (2) N3—C21—C26—C25 −175.1 (2)
C10—C11—C12—C7 −1.2 (4) C24—C25—C26—C21 0.3 (4)
C14—C11—C12—C7 178.4 (3) C28—C25—C26—C21 177.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.82 (2) 2.40 (2) 3.089 (3) 142 (3)
N1—H1N···O3 0.82 (2) 2.52 (3) 2.893 (4) 109 (2)
N3—H3N···O7 0.83 (2) 2.42 (3) 2.963 (3) 124 (3)
N3—H3N···O6ii 0.83 (2) 2.54 (2) 3.195 (3) 136 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5184).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2627. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036926/is5184sup1.cif

e-68-o2823-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036926/is5184Isup2.hkl

e-68-o2823-Isup2.hkl (290.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036926/is5184Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES