Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):o2826. doi: 10.1107/S1600536812036963

Quinoline-8-sulfonamide1

Krzysztof Marciniec a,*, Andrzej Maślankiewicz a, Maria Nowak b, Joachim Kusz b
PMCID: PMC3470188  PMID: 23125632

Abstract

In the title compound, C9H8N2O2S, the sulfamoyl NH2 group is involved in intra­molecular N—H⋯N and inter­molecular N—H⋯O hydrogen bonding. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers, which are further associated through π–π stacking inter­actions between the quinoline benzene rings [centroid–centroid distance = 3.649 (1) Å] into a one-dimensional polymeric structure extending along the a axis.

Related literature  

For the use of the quinoline­sulfamoyl unit in medicinal chemistry, see: Borras et al. (1999); Eveloch et al. (1981); Zajdel et al. (2011, 2012). For the synthesis, see: Maślankiewicz et al. (2007). For hydrogen-bonding motifs in sufonamides, see: Adsmond & Grant (2001). For graph-set notation of hydrgen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o2826-scheme1.jpg

Experimental  

Crystal data  

  • C9H8N2O2S

  • M r = 208.23

  • Monoclinic, Inline graphic

  • a = 8.9431 (3) Å

  • b = 10.4542 (2) Å

  • c = 10.4648 (2) Å

  • β = 109.313 (2)°

  • V = 923.33 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.34 × 0.21 × 0.18 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.898, T max = 0.944

  • 5936 measured reflections

  • 1636 independent reflections

  • 1446 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.095

  • S = 0.97

  • 1636 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Jmol (Hanson, 2010) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036963/gk2515sup1.cif

e-68-o2826-sup1.cif (18.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812036963/gk2515Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036963/gk2515Isup3.hkl

e-68-o2826-Isup3.hkl (79KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036963/gk2515Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O2i 0.87 (2) 2.15 (3) 3.013 (2) 169 (2)
N2—H2N⋯N1 0.83 (2) 2.33 (2) 2.921 (2) 129 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was supported by the Medical University of Silesia, grant No. KNW-1–073/P/1/0.

supplementary crystallographic information

Comment

Quinolinesulfamoyl moiety is being more and more frequently incorporated into molecules of biologically active compounds such as carbonic anhydrase inhibitors (Borras et al., 1999) and 5-HT receptors ligands (Zajdel et al., 2011; Zajdel et al., 2012). Since the quinoline drugs as well as sulfonamides strongly interact with enzymatic receptors via their nitrogen atoms (Eveloch et al., 1981) we studied the crystal structure of the title compound, to evaluate the spatial environment of the nitrogen atoms.

The molecular conformation of quinoline-8-sulfonamide with the adopted atomic numbering is presented in Fig.1. The sulfonamide group participates in both intra- and intermolecular hydrogen bonding. The H2 atom of the sulfamoyl group shows an intramolecular contact with the N1 atom of the quinoline ring system (Table 1) resulting in the graph-set motif of S(6) (Bernstein et al., 1995). In the crystal, the molecules form dimers through N2—H1···O2 hydrogen bonds (Table 1). It is interesting to note that the most commonly observed hydrogen bonding in sulfonamides in the studies reported by Adsmond &Grant (2001) consing of S=O···H—N chains (50 occurrences in 39 different sulfonamide structures) is absent in the title compound.

A π-π stacking interaction is observed between the benzene C4A/C5—C8/C8A rings of neighboring dimers with the centroid-to-centroid distance, Cg···Cg (1 - x, 2 - y, -z) of 3.649 (1) Å and interplanar spacing of 3.373 (1) Å (Fig. 2). The π–π stacking interaction connects the dimers along the [100] direction forming one-dimesional polymeric structure.

Experimental

The title compound was prepared by the reaction of 8-quinolinesulfonylchloride with an excess ammonia at temperature of 45°C according to the procedure reported by Maślankiewicz et al. (2007). Single crystals of the title compound suitable for X-ray structure determination were obtained by recrystallization from an ethanolic solution.

Refinement

The hydrogen atoms participating in hydrogen bonding were located in a difference Fourier map and freely refined. Other hydrogen atoms were introduced in geometrically idealized positions and refined using a riding-model approximation with C—H distances of 0.93 Å and with Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

π-π stacking interactions (green dashed line) and hydrogen bonds (black dashed lines) in the title crystal structure. H atoms not involved in hydrogen bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

Crystal packing of the title compound along the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H8N2O2S F(000) = 432
Mr = 208.23 Dx = 1.498 Mg m3
Monoclinic, P21/n Melting point: 457.2 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.9431 (3) Å Cell parameters from 5251 reflections
b = 10.4542 (2) Å θ = 3.1–34.5°
c = 10.4648 (2) Å µ = 0.32 mm1
β = 109.313 (2)° T = 298 K
V = 923.33 (4) Å3 Polyhedron, colourless
Z = 4 0.34 × 0.21 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer 1636 independent reflections
Radiation source: fine-focus sealed tube 1446 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
Detector resolution: 16.0328 pixels mm-1 θmax = 25.1°, θmin = 3.1°
ω–scan h = −8→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −12→11
Tmin = 0.898, Tmax = 0.944 l = −12→10
5936 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.075P)2 + 0.1368P] where P = (Fo2 + 2Fc2)/3
1636 reflections (Δ/σ)max = 0.001
135 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.66396 (4) 0.87959 (4) 0.17318 (4) 0.03962 (18)
O1 0.69562 (15) 0.80754 (13) 0.29483 (13) 0.0560 (4)
O2 0.52811 (14) 0.84522 (13) 0.05984 (13) 0.0542 (4)
N1 0.98319 (16) 0.98818 (14) 0.31765 (14) 0.0438 (3)
N2 0.6409 (2) 1.02696 (16) 0.2070 (2) 0.0501 (4)
C2 1.1202 (2) 1.03811 (18) 0.3911 (2) 0.0556 (5)
H2 1.1242 1.0848 0.4678 0.067*
C3 1.2598 (2) 1.0245 (2) 0.3596 (2) 0.0637 (6)
H3 1.3541 1.0596 0.4160 0.076*
C4 1.2566 (2) 0.96016 (18) 0.2470 (2) 0.0568 (5)
H4 1.3485 0.9520 0.2245 0.068*
C4A 1.1134 (2) 0.90515 (16) 0.16339 (19) 0.0430 (4)
C5 1.0985 (2) 0.83950 (17) 0.0427 (2) 0.0513 (5)
H5 1.1871 0.8287 0.0161 0.062*
C6 0.9568 (2) 0.79162 (18) −0.0357 (2) 0.0540 (5)
H6 0.9487 0.7495 −0.1161 0.065*
C7 0.8221 (2) 0.80560 (16) 0.00428 (17) 0.0448 (4)
H7 0.7254 0.7722 −0.0494 0.054*
C8 0.83294 (17) 0.86792 (14) 0.12156 (15) 0.0341 (4)
C8A 0.97904 (17) 0.92153 (14) 0.20522 (15) 0.0351 (3)
H1N 0.603 (3) 1.071 (2) 0.133 (3) 0.059 (6)*
H2N 0.722 (3) 1.057 (2) 0.263 (3) 0.065 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0313 (3) 0.0447 (3) 0.0465 (3) −0.00383 (16) 0.01779 (19) 0.00320 (17)
O1 0.0532 (8) 0.0673 (9) 0.0553 (8) −0.0052 (6) 0.0284 (6) 0.0151 (6)
O2 0.0352 (6) 0.0582 (8) 0.0648 (8) −0.0102 (5) 0.0106 (6) −0.0017 (6)
N1 0.0371 (7) 0.0500 (8) 0.0436 (8) −0.0022 (6) 0.0122 (6) −0.0040 (6)
N2 0.0378 (8) 0.0549 (10) 0.0613 (10) 0.0023 (7) 0.0215 (8) −0.0066 (9)
C2 0.0484 (10) 0.0542 (11) 0.0545 (11) −0.0042 (8) 0.0039 (8) −0.0058 (8)
C3 0.0357 (10) 0.0557 (12) 0.0876 (16) −0.0070 (8) 0.0040 (10) 0.0055 (11)
C4 0.0326 (8) 0.0488 (10) 0.0919 (15) 0.0036 (7) 0.0247 (9) 0.0119 (10)
C4A 0.0367 (9) 0.0358 (8) 0.0629 (11) 0.0066 (7) 0.0250 (8) 0.0120 (7)
C5 0.0562 (11) 0.0431 (9) 0.0718 (12) 0.0111 (8) 0.0443 (10) 0.0076 (9)
C6 0.0732 (13) 0.0457 (10) 0.0560 (10) 0.0069 (9) 0.0389 (10) −0.0030 (8)
C7 0.0509 (10) 0.0404 (9) 0.0448 (9) −0.0021 (7) 0.0181 (8) −0.0018 (7)
C8 0.0337 (8) 0.0322 (8) 0.0396 (8) 0.0008 (6) 0.0166 (6) 0.0045 (6)
C8A 0.0333 (8) 0.0328 (8) 0.0418 (8) 0.0017 (6) 0.0161 (7) 0.0047 (6)

Geometric parameters (Å, º)

S1—O1 1.4247 (13) C4—C4A 1.413 (3)
S1—O2 1.4348 (12) C4—H4 0.9300
S1—N2 1.6092 (17) C4A—C5 1.405 (3)
S1—C8 1.7693 (15) C4A—C8A 1.419 (2)
N1—C2 1.320 (2) C5—C6 1.357 (3)
N1—C8A 1.357 (2) C5—H5 0.9300
N2—H1N 0.87 (2) C6—C7 1.407 (2)
N2—H2N 0.83 (2) C6—H6 0.9300
C2—C3 1.400 (3) C7—C8 1.364 (2)
C2—H2 0.9300 C7—H7 0.9300
C3—C4 1.349 (3) C8—C8A 1.425 (2)
C3—H3 0.9300
O1—S1—O2 118.03 (8) C5—C4A—C4 123.55 (17)
O1—S1—N2 108.14 (10) C5—C4A—C8A 119.89 (16)
O2—S1—N2 106.66 (9) C4—C4A—C8A 116.54 (17)
O1—S1—C8 107.39 (7) C6—C5—C4A 121.06 (15)
O2—S1—C8 107.79 (8) C6—C5—H5 119.5
N2—S1—C8 108.52 (7) C4A—C5—H5 119.5
C2—N1—C8A 117.50 (15) C5—C6—C7 120.09 (16)
S1—N2—H1N 110.7 (15) C5—C6—H6 120.0
S1—N2—H2N 112.0 (16) C7—C6—H6 120.0
H1N—N2—H2N 115 (2) C8—C7—C6 120.29 (16)
N1—C2—C3 123.47 (19) C8—C7—H7 119.9
N1—C2—H2 118.3 C6—C7—H7 119.9
C3—C2—H2 118.3 C7—C8—C8A 121.20 (14)
C4—C3—C2 119.58 (17) C7—C8—S1 119.61 (12)
C4—C3—H3 120.2 C8A—C8—S1 119.17 (12)
C2—C3—H3 120.2 N1—C8A—C4A 123.12 (15)
C3—C4—C4A 119.77 (17) N1—C8A—C8 119.41 (13)
C3—C4—H4 120.1 C4A—C8A—C8 117.45 (15)
C4A—C4—H4 120.1
C8A—N1—C2—C3 −0.7 (3) O1—S1—C8—C8A −64.59 (13)
N1—C2—C3—C4 1.7 (3) O2—S1—C8—C8A 167.26 (12)
C2—C3—C4—C4A −1.2 (3) N2—S1—C8—C8A 52.10 (15)
C3—C4—C4A—C5 178.30 (18) C2—N1—C8A—C4A −0.8 (2)
C3—C4—C4A—C8A −0.2 (3) C2—N1—C8A—C8 −178.87 (15)
C4—C4A—C5—C6 −178.12 (17) C5—C4A—C8A—N1 −177.31 (15)
C8A—C4A—C5—C6 0.4 (3) C4—C4A—C8A—N1 1.3 (2)
C4A—C5—C6—C7 −1.0 (3) C5—C4A—C8A—C8 0.8 (2)
C5—C6—C7—C8 0.4 (3) C4—C4A—C8A—C8 179.37 (14)
C6—C7—C8—C8A 0.8 (2) C7—C8—C8A—N1 176.81 (15)
C6—C7—C8—S1 −177.78 (13) S1—C8—C8A—N1 −4.61 (19)
O1—S1—C8—C7 114.02 (14) C7—C8—C8A—C4A −1.4 (2)
O2—S1—C8—C7 −14.14 (15) S1—C8—C8A—C4A 177.22 (11)
N2—S1—C8—C7 −129.30 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N···O2i 0.87 (2) 2.15 (3) 3.013 (2) 169 (2)
N2—H2N···N1 0.83 (2) 2.33 (2) 2.921 (2) 129 (2)

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

1

Part CXXXII in the series of Azinyl Sulfides.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2515).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Borras, J., Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. & Supuran, C. T. (1999). Bioorg. Med. Chem. pp. 2397–2406. [DOI] [PubMed]
  4. Eveloch, J. L., Bocian, D. F. & Sudmeier, J. L. (1981). Biochemistry, 20, 4951–4954. [DOI] [PubMed]
  5. Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Maślankiewicz, A., Marciniec, K., Pawłowski, M. & Zajdel, P. (2007). Heterocycles, 71, 1975–1990.
  8. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abington, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zajdel, P., Marciniec, K., Maślankiewicz, A., Paluchowska, M. H., Satała, G., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A., Duszyńska, B., Bojarski, A. J. & Pawłowski, M. (2011). Bioorg. Med. Chem. pp. 6750–6759. [DOI] [PubMed]
  11. Zajdel, P., Marciniec, K., Maślankiewicz, A., Satała, G., Duszyńska, B., Bojarski, A. J., Partyka, A., Jastrzębska-Więsek, M., Wróbel, D., Wesołowska, A. & Pawłowski, M. (2012). Bioorg. Med. Chem. pp. 1545–1556. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812036963/gk2515sup1.cif

e-68-o2826-sup1.cif (18.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812036963/gk2515Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812036963/gk2515Isup3.hkl

e-68-o2826-Isup3.hkl (79KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812036963/gk2515Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES