Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):o2827. doi: 10.1107/S1600536812037312

3,3′-(Piperazine-1,4-diium-1,4-di­yl)di­propionate dihydrate

Shouwen Jin a,*, Yanfei Huang a, Hao Fang a, Tianyi Wang a, Liangliang Ding a
PMCID: PMC3470189  PMID: 23125633

Abstract

During the recrystallization of 3-[4-(2-carb­oxy­eth­yl)piperazin-1-yl]propionic acid, the carb­oxy­lic acid H atoms were transferred to the piperazine N atoms, forming the title compound, C10H18N2O4·2H2O, in which the zwitterion lies about an inversion center. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds connect the zwitterions into a two-dimensional framework parallel to (-102) forming R 4 4(30) rings. O—H⋯O hydrogen bonds involving the solvent water mol­ecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H⋯O hydrogen bonds are observed.

Related literature  

For general background and applications of carb­oxy­lic acids, see: Jin et al. (2012); Grossel et al. (2006); Rueff et al. (2001); Strachan et al. (2007); Desiraju (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). graphic file with name e-68-o2827-scheme1.jpg

Experimental  

Crystal data  

  • C10H18N2O4·2H2O

  • M r = 266.30

  • Monoclinic, Inline graphic

  • a = 6.8028 (6) Å

  • b = 8.8925 (7) Å

  • c = 10.4301 (11) Å

  • β = 101.780 (1)°

  • V = 617.67 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.43 × 0.40 × 0.32 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.951, T max = 0.963

  • 2951 measured reflections

  • 1087 independent reflections

  • 895 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.111

  • S = 1.06

  • 1087 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037312/lh5520sup1.cif

e-68-o2827-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037312/lh5520Isup2.hkl

e-68-o2827-Isup2.hkl (53.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037312/lh5520Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3F⋯O2i 0.85 1.93 2.776 (2) 177
O3—H3E⋯O1 0.85 2.11 2.964 (2) 177
N1—H1⋯O2ii 0.91 2.50 3.0577 (19) 120
N1—H1⋯O1ii 0.91 1.80 2.7011 (18) 172
C4—H4B⋯O3iii 0.97 2.58 3.419 (2) 145
C4—H4B⋯O2ii 0.97 2.53 3.137 (2) 120
C5—H5A⋯O1iv 0.97 2.51 3.477 (2) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A & F University.

supplementary crystallographic information

Comment

Carboxylic acids are important compounds, which have been widely used in various fields as coordination chemistry (Rueff et al., 2001), pharmaceutical chemistry (Strachan et al., 2007), and supramolecular chemistry (Desiraju, 2002). Recently the main focus for carboxylic acids has been in crystal engineering via hydrogen bonded assembly of organic acids and organic bases (Grossel et al., 2006). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2012), herein we report the crystal structure of the title compound (I).

During the recrystallization of 3-[4-(2-carboxy-ethyl)-piperazin-1-yl]-propionic acid the carboxylic acid H atoms were transferred to the piperazine N atoms forming (I) (Fig. 1) in which the zwitterion lies across an inversion center. In the crystal, bifurcated N—H···(O,O) hydrogen bonds connect the zwitterions a two-dimensional framework parallel to (102) forming R44(30) rings (Bernstein et al., 1995). Furthermore O—H···O hydrogen bonds involving sovent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H···O hydrogen bonds are observed (Fig. 2).

Experimental

3-[4-(2-Carboxy-ethyl)-piperazin-1-yl]-propionic acid (23.0 mg, 0.10 mmol) was dissolved in 6 ml of ethanol, and pyridine (15.8 mg, 0.2 mmol) was added to the ethanol solution. The solution was stirred for 1 h, and then filtered into a test tube. The solution was left standing at room temperature for about one week, colorless block crystals were obtained.

Refinement

All H atoms were visible in difference Fourier maps. They were subsequently included in calculated positions with C—H = 0.97 Å, N—H = 0.91Å, O—H = 0.85Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, -y, -z). Only the symmetry unique solvent water molecule is shown.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dotted lines.

Crystal data

C10H18N2O4·2H2O F(000) = 288
Mr = 266.30 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1525 reflections
a = 6.8028 (6) Å θ = 3.0–28.2°
b = 8.8925 (7) Å µ = 0.12 mm1
c = 10.4301 (11) Å T = 298 K
β = 101.780 (1)° Block, colorless
V = 617.67 (10) Å3 0.43 × 0.40 × 0.32 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1087 independent reflections
Radiation source: fine-focus sealed tube 895 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −8→7
Tmin = 0.951, Tmax = 0.963 k = −10→5
2951 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3063P] where P = (Fo2 + 2Fc2)/3
1087 reflections (Δ/σ)max < 0.001
82 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.15979 (19) 0.08898 (15) 0.08004 (12) 0.0204 (3)
H1 0.2428 0.0121 0.1137 0.024*
O1 0.56844 (18) 0.37957 (15) 0.31249 (12) 0.0340 (4)
O2 0.7046 (2) 0.4517 (2) 0.14744 (14) 0.0551 (5)
O3 0.8070 (2) 0.10838 (18) 0.40824 (15) 0.0541 (5)
H3E 0.7405 0.1861 0.3781 0.065*
H3F 0.7788 0.0870 0.4818 0.065*
C1 0.5838 (2) 0.3752 (2) 0.19346 (17) 0.0288 (4)
C2 0.4531 (3) 0.2636 (2) 0.10320 (18) 0.0335 (5)
H2A 0.4302 0.3019 0.0143 0.040*
H2B 0.5256 0.1694 0.1049 0.040*
C3 0.2521 (3) 0.23274 (19) 0.13874 (17) 0.0276 (4)
H3A 0.2697 0.2274 0.2333 0.033*
H3B 0.1616 0.3154 0.1084 0.033*
C4 −0.0379 (2) 0.06441 (19) 0.11862 (16) 0.0236 (4)
H4A −0.1283 0.1462 0.0851 0.028*
H4B −0.0187 0.0648 0.2134 0.028*
C5 0.1314 (2) 0.08320 (19) −0.06607 (15) 0.0230 (4)
H5A 0.2604 0.0950 −0.0910 0.028*
H5B 0.0456 0.1656 −0.1042 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0183 (7) 0.0214 (7) 0.0211 (7) −0.0005 (5) 0.0031 (5) −0.0011 (6)
O1 0.0355 (7) 0.0386 (8) 0.0274 (7) −0.0108 (6) 0.0049 (5) −0.0046 (6)
O2 0.0584 (9) 0.0713 (11) 0.0388 (8) −0.0414 (9) 0.0174 (7) −0.0142 (8)
O3 0.0650 (10) 0.0500 (10) 0.0518 (10) 0.0019 (8) 0.0225 (8) 0.0053 (8)
C1 0.0261 (9) 0.0297 (9) 0.0300 (10) −0.0040 (7) 0.0044 (7) −0.0036 (8)
C2 0.0317 (10) 0.0379 (11) 0.0317 (10) −0.0112 (8) 0.0084 (8) −0.0090 (8)
C3 0.0249 (9) 0.0256 (9) 0.0317 (9) −0.0040 (7) 0.0046 (7) −0.0064 (7)
C4 0.0201 (8) 0.0287 (9) 0.0224 (8) 0.0000 (7) 0.0056 (6) −0.0013 (7)
C5 0.0214 (8) 0.0279 (9) 0.0202 (8) −0.0010 (7) 0.0050 (6) 0.0022 (7)

Geometric parameters (Å, º)

N1—C4 1.4966 (19) C2—H2A 0.9700
N1—C5 1.4975 (19) C2—H2B 0.9700
N1—C3 1.499 (2) C3—H3A 0.9700
N1—H1 0.9100 C3—H3B 0.9700
O1—C1 1.267 (2) C4—C5i 1.512 (2)
O2—C1 1.237 (2) C4—H4A 0.9700
O3—H3E 0.8501 C4—H4B 0.9700
O3—H3F 0.8500 C5—C4i 1.512 (2)
C1—C2 1.523 (2) C5—H5A 0.9700
C2—C3 1.513 (2) C5—H5B 0.9700
C4—N1—C5 109.42 (12) N1—C3—H3A 109.2
C4—N1—C3 109.84 (12) C2—C3—H3A 109.2
C5—N1—C3 113.65 (13) N1—C3—H3B 109.2
C4—N1—H1 107.9 C2—C3—H3B 109.2
C5—N1—H1 107.9 H3A—C3—H3B 107.9
C3—N1—H1 107.9 N1—C4—C5i 111.35 (13)
H3E—O3—H3F 108.3 N1—C4—H4A 109.4
O2—C1—O1 123.88 (16) C5i—C4—H4A 109.4
O2—C1—C2 117.96 (16) N1—C4—H4B 109.4
O1—C1—C2 118.09 (15) C5i—C4—H4B 109.4
C3—C2—C1 114.16 (15) H4A—C4—H4B 108.0
C3—C2—H2A 108.7 N1—C5—C4i 110.85 (13)
C1—C2—H2A 108.7 N1—C5—H5A 109.5
C3—C2—H2B 108.7 C4i—C5—H5A 109.5
C1—C2—H2B 108.7 N1—C5—H5B 109.5
H2A—C2—H2B 107.6 C4i—C5—H5B 109.5
N1—C3—C2 112.25 (14) H5A—C5—H5B 108.1
O2—C1—C2—C3 −151.50 (18) C5—N1—C4—C5i 57.11 (18)
O1—C1—C2—C3 31.5 (2) C3—N1—C4—C5i −177.48 (13)
C4—N1—C3—C2 179.91 (14) C4—N1—C5—C4i −56.82 (18)
C5—N1—C3—C2 −57.14 (19) C3—N1—C5—C4i −179.99 (13)
C1—C2—C3—N1 −160.56 (15)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3F···O2ii 0.85 1.93 2.776 (2) 177
O3—H3E···O1 0.85 2.11 2.964 (2) 177
N1—H1···O2iii 0.91 2.50 3.0577 (19) 120
N1—H1···O1iii 0.91 1.80 2.7011 (18) 172
C4—H4B···O3iv 0.97 2.58 3.419 (2) 145
C4—H4B···O2iii 0.97 2.53 3.137 (2) 120
C5—H5A···O1v 0.97 2.51 3.477 (2) 172

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, y, z; (v) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5520).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
  4. Grossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123–128.
  5. Jin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51–59.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Rueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843–2848.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Strachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261–269. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037312/lh5520sup1.cif

e-68-o2827-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037312/lh5520Isup2.hkl

e-68-o2827-Isup2.hkl (53.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037312/lh5520Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES