Abstract
During the recrystallization of 3-[4-(2-carboxyethyl)piperazin-1-yl]propionic acid, the carboxylic acid H atoms were transferred to the piperazine N atoms, forming the title compound, C10H18N2O4·2H2O, in which the zwitterion lies about an inversion center. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds connect the zwitterions into a two-dimensional framework parallel to (-102) forming R 4 4(30) rings. O—H⋯O hydrogen bonds involving the solvent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H⋯O hydrogen bonds are observed.
Related literature
For general background and applications of carboxylic acids, see: Jin et al. (2012 ▶); Grossel et al. (2006 ▶); Rueff et al. (2001 ▶); Strachan et al. (2007 ▶); Desiraju (2002 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C10H18N2O4·2H2O
M r = 266.30
Monoclinic,
a = 6.8028 (6) Å
b = 8.8925 (7) Å
c = 10.4301 (11) Å
β = 101.780 (1)°
V = 617.67 (10) Å3
Z = 2
Mo Kα radiation
μ = 0.12 mm−1
T = 298 K
0.43 × 0.40 × 0.32 mm
Data collection
Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002 ▶) T min = 0.951, T max = 0.963
2951 measured reflections
1087 independent reflections
895 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.111
S = 1.06
1087 reflections
82 parameters
H-atom parameters constrained
Δρmax = 0.21 e Å−3
Δρmin = −0.23 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037312/lh5520sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037312/lh5520Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812037312/lh5520Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3F⋯O2i | 0.85 | 1.93 | 2.776 (2) | 177 |
| O3—H3E⋯O1 | 0.85 | 2.11 | 2.964 (2) | 177 |
| N1—H1⋯O2ii | 0.91 | 2.50 | 3.0577 (19) | 120 |
| N1—H1⋯O1ii | 0.91 | 1.80 | 2.7011 (18) | 172 |
| C4—H4B⋯O3iii | 0.97 | 2.58 | 3.419 (2) | 145 |
| C4—H4B⋯O2ii | 0.97 | 2.53 | 3.137 (2) | 120 |
| C5—H5A⋯O1iv | 0.97 | 2.51 | 3.477 (2) | 172 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A & F University.
supplementary crystallographic information
Comment
Carboxylic acids are important compounds, which have been widely used in various fields as coordination chemistry (Rueff et al., 2001), pharmaceutical chemistry (Strachan et al., 2007), and supramolecular chemistry (Desiraju, 2002). Recently the main focus for carboxylic acids has been in crystal engineering via hydrogen bonded assembly of organic acids and organic bases (Grossel et al., 2006). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2012), herein we report the crystal structure of the title compound (I).
During the recrystallization of 3-[4-(2-carboxy-ethyl)-piperazin-1-yl]-propionic acid the carboxylic acid H atoms were transferred to the piperazine N atoms forming (I) (Fig. 1) in which the zwitterion lies across an inversion center. In the crystal, bifurcated N—H···(O,O) hydrogen bonds connect the zwitterions a two-dimensional framework parallel to (102) forming R44(30) rings (Bernstein et al., 1995). Furthermore O—H···O hydrogen bonds involving sovent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak C—H···O hydrogen bonds are observed (Fig. 2).
Experimental
3-[4-(2-Carboxy-ethyl)-piperazin-1-yl]-propionic acid (23.0 mg, 0.10 mmol) was dissolved in 6 ml of ethanol, and pyridine (15.8 mg, 0.2 mmol) was added to the ethanol solution. The solution was stirred for 1 h, and then filtered into a test tube. The solution was left standing at room temperature for about one week, colorless block crystals were obtained.
Refinement
All H atoms were visible in difference Fourier maps. They were subsequently included in calculated positions with C—H = 0.97 Å, N—H = 0.91Å, O—H = 0.85Å and were constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).
Figures
Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, -y, -z). Only the symmetry unique solvent water molecule is shown.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dotted lines.
Crystal data
| C10H18N2O4·2H2O | F(000) = 288 |
| Mr = 266.30 | Dx = 1.432 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1525 reflections |
| a = 6.8028 (6) Å | θ = 3.0–28.2° |
| b = 8.8925 (7) Å | µ = 0.12 mm−1 |
| c = 10.4301 (11) Å | T = 298 K |
| β = 101.780 (1)° | Block, colorless |
| V = 617.67 (10) Å3 | 0.43 × 0.40 × 0.32 mm |
| Z = 2 |
Data collection
| Bruker SMART CCD diffractometer | 1087 independent reflections |
| Radiation source: fine-focus sealed tube | 895 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.023 |
| φ and ω scans | θmax = 25.0°, θmin = 3.0° |
| Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −8→7 |
| Tmin = 0.951, Tmax = 0.963 | k = −10→5 |
| 2951 measured reflections | l = −12→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.111 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0526P)2 + 0.3063P] where P = (Fo2 + 2Fc2)/3 |
| 1087 reflections | (Δ/σ)max < 0.001 |
| 82 parameters | Δρmax = 0.21 e Å−3 |
| 0 restraints | Δρmin = −0.23 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.15979 (19) | 0.08898 (15) | 0.08004 (12) | 0.0204 (3) | |
| H1 | 0.2428 | 0.0121 | 0.1137 | 0.024* | |
| O1 | 0.56844 (18) | 0.37957 (15) | 0.31249 (12) | 0.0340 (4) | |
| O2 | 0.7046 (2) | 0.4517 (2) | 0.14744 (14) | 0.0551 (5) | |
| O3 | 0.8070 (2) | 0.10838 (18) | 0.40824 (15) | 0.0541 (5) | |
| H3E | 0.7405 | 0.1861 | 0.3781 | 0.065* | |
| H3F | 0.7788 | 0.0870 | 0.4818 | 0.065* | |
| C1 | 0.5838 (2) | 0.3752 (2) | 0.19346 (17) | 0.0288 (4) | |
| C2 | 0.4531 (3) | 0.2636 (2) | 0.10320 (18) | 0.0335 (5) | |
| H2A | 0.4302 | 0.3019 | 0.0143 | 0.040* | |
| H2B | 0.5256 | 0.1694 | 0.1049 | 0.040* | |
| C3 | 0.2521 (3) | 0.23274 (19) | 0.13874 (17) | 0.0276 (4) | |
| H3A | 0.2697 | 0.2274 | 0.2333 | 0.033* | |
| H3B | 0.1616 | 0.3154 | 0.1084 | 0.033* | |
| C4 | −0.0379 (2) | 0.06441 (19) | 0.11862 (16) | 0.0236 (4) | |
| H4A | −0.1283 | 0.1462 | 0.0851 | 0.028* | |
| H4B | −0.0187 | 0.0648 | 0.2134 | 0.028* | |
| C5 | 0.1314 (2) | 0.08320 (19) | −0.06607 (15) | 0.0230 (4) | |
| H5A | 0.2604 | 0.0950 | −0.0910 | 0.028* | |
| H5B | 0.0456 | 0.1656 | −0.1042 | 0.028* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0183 (7) | 0.0214 (7) | 0.0211 (7) | −0.0005 (5) | 0.0031 (5) | −0.0011 (6) |
| O1 | 0.0355 (7) | 0.0386 (8) | 0.0274 (7) | −0.0108 (6) | 0.0049 (5) | −0.0046 (6) |
| O2 | 0.0584 (9) | 0.0713 (11) | 0.0388 (8) | −0.0414 (9) | 0.0174 (7) | −0.0142 (8) |
| O3 | 0.0650 (10) | 0.0500 (10) | 0.0518 (10) | 0.0019 (8) | 0.0225 (8) | 0.0053 (8) |
| C1 | 0.0261 (9) | 0.0297 (9) | 0.0300 (10) | −0.0040 (7) | 0.0044 (7) | −0.0036 (8) |
| C2 | 0.0317 (10) | 0.0379 (11) | 0.0317 (10) | −0.0112 (8) | 0.0084 (8) | −0.0090 (8) |
| C3 | 0.0249 (9) | 0.0256 (9) | 0.0317 (9) | −0.0040 (7) | 0.0046 (7) | −0.0064 (7) |
| C4 | 0.0201 (8) | 0.0287 (9) | 0.0224 (8) | 0.0000 (7) | 0.0056 (6) | −0.0013 (7) |
| C5 | 0.0214 (8) | 0.0279 (9) | 0.0202 (8) | −0.0010 (7) | 0.0050 (6) | 0.0022 (7) |
Geometric parameters (Å, º)
| N1—C4 | 1.4966 (19) | C2—H2A | 0.9700 |
| N1—C5 | 1.4975 (19) | C2—H2B | 0.9700 |
| N1—C3 | 1.499 (2) | C3—H3A | 0.9700 |
| N1—H1 | 0.9100 | C3—H3B | 0.9700 |
| O1—C1 | 1.267 (2) | C4—C5i | 1.512 (2) |
| O2—C1 | 1.237 (2) | C4—H4A | 0.9700 |
| O3—H3E | 0.8501 | C4—H4B | 0.9700 |
| O3—H3F | 0.8500 | C5—C4i | 1.512 (2) |
| C1—C2 | 1.523 (2) | C5—H5A | 0.9700 |
| C2—C3 | 1.513 (2) | C5—H5B | 0.9700 |
| C4—N1—C5 | 109.42 (12) | N1—C3—H3A | 109.2 |
| C4—N1—C3 | 109.84 (12) | C2—C3—H3A | 109.2 |
| C5—N1—C3 | 113.65 (13) | N1—C3—H3B | 109.2 |
| C4—N1—H1 | 107.9 | C2—C3—H3B | 109.2 |
| C5—N1—H1 | 107.9 | H3A—C3—H3B | 107.9 |
| C3—N1—H1 | 107.9 | N1—C4—C5i | 111.35 (13) |
| H3E—O3—H3F | 108.3 | N1—C4—H4A | 109.4 |
| O2—C1—O1 | 123.88 (16) | C5i—C4—H4A | 109.4 |
| O2—C1—C2 | 117.96 (16) | N1—C4—H4B | 109.4 |
| O1—C1—C2 | 118.09 (15) | C5i—C4—H4B | 109.4 |
| C3—C2—C1 | 114.16 (15) | H4A—C4—H4B | 108.0 |
| C3—C2—H2A | 108.7 | N1—C5—C4i | 110.85 (13) |
| C1—C2—H2A | 108.7 | N1—C5—H5A | 109.5 |
| C3—C2—H2B | 108.7 | C4i—C5—H5A | 109.5 |
| C1—C2—H2B | 108.7 | N1—C5—H5B | 109.5 |
| H2A—C2—H2B | 107.6 | C4i—C5—H5B | 109.5 |
| N1—C3—C2 | 112.25 (14) | H5A—C5—H5B | 108.1 |
| O2—C1—C2—C3 | −151.50 (18) | C5—N1—C4—C5i | 57.11 (18) |
| O1—C1—C2—C3 | 31.5 (2) | C3—N1—C4—C5i | −177.48 (13) |
| C4—N1—C3—C2 | 179.91 (14) | C4—N1—C5—C4i | −56.82 (18) |
| C5—N1—C3—C2 | −57.14 (19) | C3—N1—C5—C4i | −179.99 (13) |
| C1—C2—C3—N1 | −160.56 (15) |
Symmetry code: (i) −x, −y, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3F···O2ii | 0.85 | 1.93 | 2.776 (2) | 177 |
| O3—H3E···O1 | 0.85 | 2.11 | 2.964 (2) | 177 |
| N1—H1···O2iii | 0.91 | 2.50 | 3.0577 (19) | 120 |
| N1—H1···O1iii | 0.91 | 1.80 | 2.7011 (18) | 172 |
| C4—H4B···O3iv | 0.97 | 2.58 | 3.419 (2) | 145 |
| C4—H4B···O2iii | 0.97 | 2.53 | 3.137 (2) | 120 |
| C5—H5A···O1v | 0.97 | 2.51 | 3.477 (2) | 172 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, y, z; (v) x, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5520).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
- Grossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123–128.
- Jin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. & Ding, L. L. (2012). J. Mol. Struct. 1017, 51–59.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Rueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843–2848.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Strachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261–269. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037312/lh5520sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037312/lh5520Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812037312/lh5520Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


