Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 1;68(Pt 10):o2828. doi: 10.1107/S1600536812037063

4-Dimethyl­amino-N′-(4-nitro­benzyl­idene)benzohydrazide methanol monosolvate

Xiyue Zhang a,*, Xiaobo Fu b, Langzhu Tan c, Chaixia Wang b, Weixing Fan a
PMCID: PMC3470190  PMID: 23125634

Abstract

In the title compound, C16H16N4O3·CH3OH, the aromatic rings form a dihedral angle of 0.4 (2)°. The nitro group is twisted from the attached benzene ring by 7.5 (2)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link alternating hydrazone and methanol mol­ecules into chains in [100]. The crystal packing exhibits π–π inter­actions between aromatic rings from neighbouring chains [centroid–centroid distances = 3.734 (3) and 3.903 (3) Å].

Related literature  

For the biological activity of hydrazone compounds, see: Zhang et al. (2012); Cacic et al. (2006); Rauf et al. (2008); Bedia et al. (2006). For similar hydrazone compounds, see: Horkaew et al. (2012); Kargar et al. (2012); Hu & Liu (2012). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-68-o2828-scheme1.jpg

Experimental  

Crystal data  

  • C16H16N4O3·CH4O

  • M r = 344.37

  • Triclinic, Inline graphic

  • a = 6.6621 (12) Å

  • b = 10.6685 (17) Å

  • c = 13.3437 (13) Å

  • α = 72.279 (2)°

  • β = 83.444 (2)°

  • γ = 73.984 (2)°

  • V = 867.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.23 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.972, T max = 0.978

  • 6198 measured reflections

  • 3140 independent reflections

  • 2082 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.208

  • S = 1.08

  • 3140 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037063/cv5333sup1.cif

e-68-o2828-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037063/cv5333Isup2.hkl

e-68-o2828-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037063/cv5333Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.92 2.733 (2) 170
N2—H2⋯O4i 0.89 (1) 2.01 (1) 2.889 (2) 170 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Hydrazones derived from the condensation reactions of hydrazines with carbonyl-containing compounds have been found to possess many biological activities, such as antibacterial, anticonvulsant, anti-inflamatory, and antitubercular (Zhang et al., 2012; Cacic et al., 2006; Rauf et al., 2008; Bedia et al., 2006). Recently, a number of hydrazones have been prepared and structurally characterized (Horkaew et al., 2012; Kargar et al., 2012; Hu & Liu, 2012). As an extension of work on the structural characterization of hydrazones, the title compound is reported here.

The asymmetric unit of the title compound contains a hydrazone molecule and a methanol molecule of crystallization linked by O—H···O hydrogen bond (Fig. 1). The hydrazone molecule displays a trans conformation with respect to the C=N bond. Two aromatic rings in the hydrazone molecules form a dihedral angle of 0.4 (2)°. The nitro group is twisted from the attached benzene ring at 7.5 (2)°. Intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) link alternating hydrazone and methanol molecules into chains in [100] (Fig. 2). The crystal packing exhibits π–π interactions between the aromatic ring from the neighbouring chains [centroid-centroid distances 3.734 (3), 3.903 (3) Å].

Experimental

4-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 4-dimethylaminobenzhydrazide (0.1 mmol, 17.9 mg) were stirred in 20 ml methanol at room temperature for 30 min. A large number of small and yellow single crystals were formed by slow evaporation of the methanolic solution containing the compound in air.

Refinement

The amide H2 atom was located in a difference map and was refined isotropically, with restraint N—H = 0.90 (1) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.96 Å , O—H = 0.82 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl and hydroxyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C16H16N4O3·CH4O Z = 2
Mr = 344.37 F(000) = 364
Triclinic, P1 Dx = 1.318 Mg m3
a = 6.6621 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6685 (17) Å Cell parameters from 2473 reflections
c = 13.3437 (13) Å θ = 2.5–26.5°
α = 72.279 (2)° µ = 0.10 mm1
β = 83.444 (2)° T = 298 K
γ = 73.984 (2)° Block, yellow
V = 867.9 (2) Å3 0.30 × 0.27 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3140 independent reflections
Radiation source: fine-focus sealed tube 2082 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
ω scans θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.972, Tmax = 0.978 k = −12→12
6198 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1182P)2 + 0.1132P] where P = (Fo2 + 2Fc2)/3
3140 reflections (Δ/σ)max < 0.001
233 parameters Δρmax = 0.32 e Å3
1 restraint Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0844 (3) 0.62271 (17) 0.39221 (13) 0.0471 (5)
N2 0.0240 (3) 0.56468 (18) 0.32624 (14) 0.0478 (5)
N3 0.1415 (4) 0.9440 (2) 0.71802 (16) 0.0655 (6)
N4 −0.0400 (4) 0.2426 (2) −0.00213 (16) 0.0715 (6)
O1 0.3228 (3) 0.9304 (2) 0.7318 (2) 0.1055 (8)
O2 −0.0001 (4) 1.0126 (2) 0.75895 (17) 0.0929 (7)
O3 0.3593 (2) 0.47225 (17) 0.29021 (14) 0.0672 (5)
O4 0.5727 (2) 0.63544 (19) 0.33104 (18) 0.0796 (6)
H4 0.4999 0.5874 0.3254 0.119*
C1 −0.0040 (3) 0.7521 (2) 0.51346 (15) 0.0427 (5)
C2 0.2010 (3) 0.7245 (2) 0.54349 (16) 0.0484 (5)
H2A 0.3067 0.6636 0.5177 0.058*
C3 0.2480 (3) 0.7863 (2) 0.61062 (17) 0.0516 (6)
H3 0.3848 0.7679 0.6307 0.062*
C4 0.0892 (3) 0.8763 (2) 0.64797 (16) 0.0481 (5)
C5 −0.1143 (3) 0.9036 (2) 0.62214 (17) 0.0520 (6)
H5 −0.2194 0.9628 0.6498 0.062*
C6 −0.1598 (3) 0.8413 (2) 0.55424 (17) 0.0508 (5)
H6 −0.2973 0.8594 0.5354 0.061*
C7 −0.0577 (3) 0.6877 (2) 0.44223 (17) 0.0486 (5)
H7 −0.1971 0.6943 0.4334 0.058*
C8 0.1735 (3) 0.4890 (2) 0.27631 (17) 0.0458 (5)
C9 0.1067 (3) 0.4274 (2) 0.20565 (16) 0.0436 (5)
C10 0.2582 (3) 0.3367 (2) 0.16454 (18) 0.0561 (6)
H10 0.3963 0.3175 0.1828 0.067*
C11 0.2113 (4) 0.2743 (3) 0.09784 (19) 0.0611 (6)
H11 0.3172 0.2125 0.0730 0.073*
C12 0.0067 (4) 0.3021 (2) 0.06654 (17) 0.0537 (6)
C13 −0.1459 (3) 0.3920 (2) 0.10855 (17) 0.0547 (6)
H13 −0.2842 0.4112 0.0904 0.066*
C14 −0.0978 (3) 0.4533 (2) 0.17627 (17) 0.0495 (5)
H14 −0.2038 0.5131 0.2029 0.059*
C15 −0.2519 (5) 0.2624 (4) −0.0273 (2) 0.0884 (9)
H15A −0.3265 0.2215 0.0343 0.133*
H15B −0.2541 0.2210 −0.0816 0.133*
H15C −0.3171 0.3581 −0.0515 0.133*
C16 0.1216 (6) 0.1550 (4) −0.0473 (3) 0.1070 (12)
H16A 0.2272 0.2015 −0.0802 0.161*
H16B 0.0640 0.1302 −0.0991 0.161*
H16C 0.1825 0.0745 0.0068 0.161*
C17 0.4766 (4) 0.7717 (3) 0.2827 (2) 0.0819 (8)
H17A 0.3486 0.7993 0.3205 0.123*
H17B 0.4468 0.7823 0.2114 0.123*
H17C 0.5681 0.8271 0.2830 0.123*
H2 −0.1140 (17) 0.579 (3) 0.324 (2) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0436 (9) 0.0531 (10) 0.0547 (10) −0.0173 (8) −0.0043 (8) −0.0244 (8)
N2 0.0375 (9) 0.0586 (11) 0.0595 (11) −0.0156 (8) −0.0030 (8) −0.0311 (9)
N3 0.0835 (15) 0.0537 (12) 0.0673 (13) −0.0147 (11) −0.0210 (11) −0.0247 (10)
N4 0.0817 (15) 0.0936 (16) 0.0658 (13) −0.0425 (13) 0.0073 (11) −0.0464 (12)
O1 0.0872 (15) 0.1166 (18) 0.146 (2) −0.0217 (13) −0.0391 (14) −0.0764 (15)
O2 0.1084 (16) 0.0876 (14) 0.0976 (15) −0.0057 (12) −0.0188 (12) −0.0597 (12)
O3 0.0373 (8) 0.0834 (12) 0.1006 (13) −0.0109 (8) −0.0093 (8) −0.0561 (10)
O4 0.0382 (9) 0.0841 (13) 0.1399 (17) −0.0125 (8) −0.0084 (9) −0.0664 (12)
C1 0.0416 (11) 0.0459 (11) 0.0455 (11) −0.0149 (9) −0.0015 (8) −0.0166 (9)
C2 0.0425 (11) 0.0522 (12) 0.0542 (12) −0.0093 (9) −0.0034 (9) −0.0223 (10)
C3 0.0445 (12) 0.0567 (13) 0.0575 (13) −0.0133 (10) −0.0108 (10) −0.0183 (10)
C4 0.0586 (13) 0.0435 (11) 0.0468 (12) −0.0157 (10) −0.0077 (10) −0.0150 (9)
C5 0.0523 (12) 0.0505 (12) 0.0554 (13) −0.0082 (10) 0.0002 (10) −0.0236 (10)
C6 0.0397 (11) 0.0573 (13) 0.0600 (13) −0.0123 (10) −0.0014 (9) −0.0236 (10)
C7 0.0395 (11) 0.0558 (13) 0.0583 (13) −0.0152 (10) −0.0024 (9) −0.0243 (10)
C8 0.0375 (11) 0.0487 (12) 0.0576 (13) −0.0132 (9) −0.0034 (9) −0.0217 (10)
C9 0.0390 (10) 0.0490 (12) 0.0490 (11) −0.0161 (9) −0.0002 (8) −0.0190 (9)
C10 0.0405 (11) 0.0689 (15) 0.0705 (15) −0.0184 (10) 0.0038 (10) −0.0346 (12)
C11 0.0551 (13) 0.0725 (16) 0.0718 (15) −0.0232 (12) 0.0103 (11) −0.0419 (13)
C12 0.0632 (14) 0.0644 (14) 0.0477 (12) −0.0332 (12) 0.0039 (10) −0.0232 (10)
C13 0.0489 (12) 0.0664 (14) 0.0578 (13) −0.0211 (11) −0.0083 (10) −0.0223 (11)
C14 0.0416 (11) 0.0569 (13) 0.0572 (13) −0.0147 (10) −0.0025 (9) −0.0245 (10)
C15 0.097 (2) 0.120 (2) 0.0789 (19) −0.0550 (19) −0.0136 (16) −0.0449 (17)
C16 0.112 (3) 0.148 (3) 0.112 (3) −0.066 (2) 0.034 (2) −0.095 (3)
C17 0.0672 (16) 0.101 (2) 0.085 (2) −0.0297 (16) −0.0022 (14) −0.0310 (17)

Geometric parameters (Å, º)

N1—C7 1.264 (3) C6—H6 0.9300
N1—N2 1.368 (2) C7—H7 0.9300
N2—C8 1.349 (3) C8—C9 1.468 (3)
N2—H2 0.892 (10) C9—C10 1.383 (3)
N3—O1 1.205 (3) C9—C14 1.390 (3)
N3—O2 1.212 (3) C10—C11 1.368 (3)
N3—C4 1.464 (3) C10—H10 0.9300
N4—C12 1.367 (3) C11—C12 1.398 (3)
N4—C16 1.427 (4) C11—H11 0.9300
N4—C15 1.432 (3) C12—C13 1.388 (3)
O3—C8 1.228 (2) C13—C14 1.374 (3)
O4—C17 1.396 (3) C13—H13 0.9300
O4—H4 0.8200 C14—H14 0.9300
C1—C6 1.386 (3) C15—H15A 0.9600
C1—C2 1.394 (3) C15—H15B 0.9600
C1—C7 1.454 (3) C15—H15C 0.9600
C2—C3 1.368 (3) C16—H16A 0.9600
C2—H2A 0.9300 C16—H16B 0.9600
C3—C4 1.378 (3) C16—H16C 0.9600
C3—H3 0.9300 C17—H17A 0.9600
C4—C5 1.367 (3) C17—H17B 0.9600
C5—C6 1.376 (3) C17—H17C 0.9600
C5—H5 0.9300
C7—N1—N2 117.48 (17) C10—C9—C8 117.77 (18)
C8—N2—N1 118.39 (17) C14—C9—C8 125.07 (18)
C8—N2—H2 126.9 (17) C11—C10—C9 122.1 (2)
N1—N2—H2 114.6 (17) C11—C10—H10 119.0
O1—N3—O2 122.8 (2) C9—C10—H10 119.0
O1—N3—C4 118.8 (2) C10—C11—C12 120.9 (2)
O2—N3—C4 118.4 (2) C10—C11—H11 119.5
C12—N4—C16 120.4 (2) C12—C11—H11 119.5
C12—N4—C15 121.0 (2) N4—C12—C13 121.8 (2)
C16—N4—C15 118.5 (2) N4—C12—C11 121.1 (2)
C17—O4—H4 109.5 C13—C12—C11 117.08 (19)
C6—C1—C2 118.84 (19) C14—C13—C12 121.61 (19)
C6—C1—C7 119.61 (19) C14—C13—H13 119.2
C2—C1—C7 121.54 (18) C12—C13—H13 119.2
C3—C2—C1 120.56 (19) C13—C14—C9 121.15 (19)
C3—C2—H2A 119.7 C13—C14—H14 119.4
C1—C2—H2A 119.7 C9—C14—H14 119.4
C2—C3—C4 118.83 (19) N4—C15—H15A 109.5
C2—C3—H3 120.6 N4—C15—H15B 109.5
C4—C3—H3 120.6 H15A—C15—H15B 109.5
C5—C4—C3 122.28 (19) N4—C15—H15C 109.5
C5—C4—N3 119.25 (19) H15A—C15—H15C 109.5
C3—C4—N3 118.5 (2) H15B—C15—H15C 109.5
C4—C5—C6 118.42 (19) N4—C16—H16A 109.5
C4—C5—H5 120.8 N4—C16—H16B 109.5
C6—C5—H5 120.8 H16A—C16—H16B 109.5
C5—C6—C1 121.0 (2) N4—C16—H16C 109.5
C5—C6—H6 119.5 H16A—C16—H16C 109.5
C1—C6—H6 119.5 H16B—C16—H16C 109.5
N1—C7—C1 120.24 (19) O4—C17—H17A 109.5
N1—C7—H7 119.9 O4—C17—H17B 109.5
C1—C7—H7 119.9 H17A—C17—H17B 109.5
O3—C8—N2 120.71 (18) O4—C17—H17C 109.5
O3—C8—C9 121.40 (18) H17A—C17—H17C 109.5
N2—C8—C9 117.89 (17) H17B—C17—H17C 109.5
C10—C9—C14 117.15 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3 0.82 1.92 2.733 (2) 170
N2—H2···O4i 0.89 (1) 2.01 (1) 2.889 (2) 170 (2)

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5333).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. [DOI] [PubMed]
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cacic, M., Trkovnik, M., Cacic, F. & Has-Schon, E. (2006). Molecules, 11, 134–147. [DOI] [PMC free article] [PubMed]
  5. Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070. [DOI] [PMC free article] [PubMed]
  6. Hu, H.-N. & Liu, S.-Y. (2012). Acta Cryst. E68, o1613. [DOI] [PMC free article] [PubMed]
  7. Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2321–o2322. [DOI] [PMC free article] [PubMed]
  8. Rauf, A., Banday, M. R. & Mattoo, R. H. (2008). Acta Chim. Slov. 55, 448–452.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zhang, M., Xian, D.-M., Li, H.-H., Zhang, J.-C. & You, Z.-L. (2012). Aust. J. Chem. 65, 343–350.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037063/cv5333sup1.cif

e-68-o2828-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037063/cv5333Isup2.hkl

e-68-o2828-Isup2.hkl (154KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037063/cv5333Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES