Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):o2844. doi: 10.1107/S1600536812037336

(3,4-Dimeth­oxy­phen­yl)[2-(thio­phen-2-ylcarbon­yl)phen­yl]methanone

G Ganesh a, R Sivasakthikumaran b, E Govindan c, A K Mohana Krishnan b, A SubbiahPandi c,*
PMCID: PMC3470204  PMID: 23125648

Abstract

In the title compound, C20H16O4S, the thiophene ring makes dihedral angles of 72.9 (2) and 60.5 (2)°, respectively, with the dimethoxy benzene and phenyl rings. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a C(9) chain along the b axis. The S and C atoms of the thio­phene ring are disordered over two sets of sites [site occupancies = 0.675 (3) and 0.325 (3)]. A short inter­molecular S⋯O contact [3.084 (2) Å] is observed in the crystal structure, which also features C—H⋯π inter­actions.

Related literature  

For background to thio­phene derivatives and their biological activity, see: Bonini et al. (2005); Khan et al. (2009); Brault et al. (2005); Isloora et al. (2010); Xia et al. (2010). For related structures, see: Asiri et al. (2010); Aslam et al. (2011).graphic file with name e-68-o2844-scheme1.jpg

Experimental  

Crystal data  

  • C20H16O4S

  • M r = 352.40

  • Orthorhombic, Inline graphic

  • a = 15.7324 (6) Å

  • b = 10.7988 (5) Å

  • c = 20.4877 (11) Å

  • V = 3480.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.950, T max = 0.961

  • 22015 measured reflections

  • 4469 independent reflections

  • 2968 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.03

  • 4469 reflections

  • 236 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037336/bt5963sup1.cif

e-68-o2844-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037336/bt5963Isup2.hkl

e-68-o2844-Isup2.hkl (219.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037336/bt5963Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812037336/bt5963Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C17/C19/C20/S1′/C18′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.58 3.496 (2) 169
C1—H1ACg2ii 0.96 2.99 3.799 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Thiophene derivatives exhibit anti-HIVPR inhibition (Bonini et al., 2005) and antibreast cancer (Brault et al., 2005) activity. In addition, some of the benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activity (Isloora et al., 2010). Thiophene derivates have been viewed as significant compounds for applications in many fields (Xia et al., 2010). Schiff bases are well known ligands in coordination chemistry with a wide range of biological activities (Khan et al., 2009). Against this background, and in order to obtain detailed information on molecular the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths S1—C20 and O2—C8 are normal and comparable to the corresponding values observed in the related structure of (2E)-1-(2,5-Dimethyl-3-thienyl)-3-(2-methoxyphenyl)prop-2-en-1-one (Asiri et al., 2010). The thiophene ring system makes dihedral angles of 72.9 (2) ° and 60.5 (2) °, respectively, with the dimethoxy benzene and the phenyl ring. The atoms O1 and O2 are deviated by -0.002 (1) Å and -0.010 (1) Å from the least squares plane of the C2—C7 ring. The atoms C18 and S1 of the thiophene ring are disordered over two positions [site occupancies = 0.648 (2) and 0.352 (2)].

The atom C3 acts as a donor to the atom O4 of the neighbour molecule at (-x,-1/2 + y, -z). This hydrogen bond is involved in a motif C(9) chain along b axis. Interestingly, a short non-hydrogen intermolecular contact between S1···O2 [3.084 (2) Å] at (1/2 - x,1 - y,-1/2 + z) was observed in the crystal structure. In addition to van der Waals interactions, the crystal packing is stabilized by C—H···π interaction between one of the methyl H atom (H1A) and the centroid (Cg2) of the thiophene ring (Table 1).

Experimental

To a stirred suspension of benzoic (1 g, 3.44 mmol) in dry THF (20 ml) lead tetra acetate (1.5 g, 3.42 mmol) was added and refluxed at 50 °C for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2x20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo afforded the crude product upon crystallization from methanol furnished the title compound as a color less solid.

Refinement

The S and C atoms of the thiophene ring are disordered over two positions (C18/C18' and S1/S1') with refined occupancies of 0.675 (3) and 0.325 (3). Equivalent C-C and C-S distances involving the disordered atoms were restrained to be equal with an effective e.s.d. of 0.01Å. The disordered C atoms were only isotropically refined. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular structure showing the major and minor occupied site of the disordered atoms.

Crystal data

C20H16O4S F(000) = 1472
Mr = 352.40 Dx = 1.345 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4469 reflections
a = 15.7324 (6) Å θ = 2.4–28.6°
b = 10.7988 (5) Å µ = 0.21 mm1
c = 20.4877 (11) Å T = 293 K
V = 3480.7 (3) Å3 Block, white crystalline
Z = 8 0.25 × 0.22 × 0.19 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4469 independent reflections
Radiation source: fine-focus sealed tube 2968 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 28.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −21→12
Tmin = 0.950, Tmax = 0.961 k = −14→13
22015 measured reflections l = −26→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.6807P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4469 reflections Δρmax = 0.19 e Å3
236 parameters Δρmin = −0.20 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0032 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.07420 (12) 0.29212 (17) 0.52465 (9) 0.0702 (5)
H1A 0.0927 0.2750 0.5684 0.105*
H1B 0.0939 0.2278 0.4960 0.105*
H1C 0.0132 0.2953 0.5235 0.105*
C2 0.08842 (9) 0.44770 (14) 0.44314 (7) 0.0447 (3)
C3 0.03902 (9) 0.38431 (14) 0.39886 (7) 0.0487 (4)
H3 0.0165 0.3075 0.4099 0.058*
C4 0.02285 (9) 0.43475 (14) 0.33805 (7) 0.0471 (3)
H4 −0.0110 0.3917 0.3086 0.056*
C5 0.05654 (8) 0.54875 (13) 0.32047 (7) 0.0419 (3)
C6 0.10764 (8) 0.61269 (13) 0.36538 (7) 0.0432 (3)
H6 0.1313 0.6885 0.3539 0.052*
C7 0.12280 (9) 0.56397 (14) 0.42603 (7) 0.0448 (3)
C8 0.20416 (12) 0.73733 (16) 0.46082 (9) 0.0669 (5)
H8A 0.2364 0.7649 0.4979 0.100*
H8B 0.1584 0.7942 0.4528 0.100*
H8C 0.2404 0.7337 0.4232 0.100*
C10 −0.02731 (9) 0.55919 (13) 0.21288 (7) 0.0432 (3)
C11 −0.10859 (9) 0.55142 (16) 0.23926 (9) 0.0567 (4)
H11 −0.1164 0.5629 0.2838 0.068*
C12 −0.17778 (10) 0.52680 (18) 0.19982 (10) 0.0672 (5)
H12 −0.2320 0.5229 0.2178 0.081*
C13 −0.16671 (11) 0.50815 (17) 0.13424 (10) 0.0664 (5)
H13 −0.2134 0.4912 0.1079 0.080*
C14 −0.08662 (10) 0.51440 (15) 0.10716 (8) 0.0567 (4)
H14 −0.0796 0.5011 0.0626 0.068*
C15 −0.01622 (9) 0.54042 (13) 0.14591 (7) 0.0443 (3)
C16 0.06748 (10) 0.54873 (14) 0.11162 (7) 0.0496 (4)
C17 0.13814 (9) 0.47030 (14) 0.13224 (7) 0.0464 (3)
C9 0.04505 (9) 0.60239 (13) 0.25482 (7) 0.0436 (3)
O1 0.10795 (7) 0.40790 (11) 0.50401 (5) 0.0615 (3)
O2 0.17058 (8) 0.61823 (10) 0.47356 (5) 0.0634 (3)
O3 0.09238 (7) 0.68272 (10) 0.23367 (5) 0.0606 (3)
O4 0.07382 (8) 0.61470 (13) 0.06358 (6) 0.0795 (4)
C19 0.22592 (12) 0.31667 (19) 0.17820 (10) 0.0741 (5)
H19 0.2419 0.2511 0.2050 0.089*
C20 0.27476 (11) 0.37328 (19) 0.13340 (10) 0.0747 (6)
H20 0.3309 0.3501 0.1263 0.090*
S1 0.22947 (5) 0.48657 (9) 0.09150 (7) 0.0691 (3) 0.675 (3)
C18 0.1412 (3) 0.3789 (4) 0.1768 (2) 0.0592 (17)* 0.675 (3)
H18 0.0959 0.3571 0.2036 0.071* 0.675 (3)
S1' 0.13250 (13) 0.3528 (2) 0.18931 (11) 0.0487 (5) 0.325 (3)
C18' 0.2189 (6) 0.4727 (13) 0.1078 (7) 0.160 (9)* 0.325 (3)
H18' 0.2373 0.5316 0.0778 0.192* 0.325 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0799 (12) 0.0676 (11) 0.0631 (11) 0.0014 (9) 0.0013 (9) 0.0211 (9)
C2 0.0434 (7) 0.0473 (8) 0.0434 (8) 0.0063 (6) 0.0002 (6) 0.0017 (6)
C3 0.0491 (8) 0.0439 (8) 0.0530 (9) −0.0046 (6) −0.0002 (7) 0.0035 (7)
C4 0.0457 (8) 0.0474 (8) 0.0481 (8) −0.0060 (6) −0.0023 (6) −0.0029 (7)
C5 0.0387 (7) 0.0450 (8) 0.0420 (7) 0.0002 (6) 0.0029 (6) −0.0017 (6)
C6 0.0409 (7) 0.0412 (7) 0.0475 (8) −0.0024 (6) 0.0012 (6) −0.0024 (6)
C7 0.0410 (7) 0.0457 (8) 0.0477 (8) 0.0011 (6) −0.0031 (6) −0.0060 (7)
C8 0.0731 (11) 0.0563 (10) 0.0713 (11) −0.0111 (9) −0.0122 (9) −0.0112 (9)
C10 0.0414 (7) 0.0428 (8) 0.0455 (8) 0.0021 (6) 0.0003 (6) 0.0048 (6)
C11 0.0468 (8) 0.0665 (10) 0.0567 (9) 0.0039 (7) 0.0043 (7) 0.0047 (8)
C12 0.0392 (9) 0.0766 (12) 0.0860 (13) 0.0023 (8) −0.0010 (8) 0.0088 (10)
C13 0.0522 (10) 0.0669 (11) 0.0801 (13) 0.0023 (8) −0.0214 (9) 0.0003 (10)
C14 0.0617 (10) 0.0565 (10) 0.0520 (9) 0.0055 (8) −0.0131 (8) −0.0006 (8)
C15 0.0479 (8) 0.0403 (7) 0.0448 (8) 0.0039 (6) −0.0027 (6) 0.0035 (6)
C16 0.0590 (9) 0.0486 (8) 0.0411 (8) 0.0023 (7) 0.0036 (7) 0.0010 (7)
C17 0.0464 (8) 0.0490 (8) 0.0438 (8) −0.0003 (6) 0.0065 (6) −0.0059 (7)
C9 0.0436 (7) 0.0431 (7) 0.0441 (8) 0.0003 (6) 0.0049 (6) −0.0030 (6)
O1 0.0726 (7) 0.0614 (7) 0.0506 (6) −0.0004 (6) −0.0104 (5) 0.0102 (5)
O2 0.0760 (8) 0.0576 (7) 0.0565 (7) −0.0122 (6) −0.0208 (6) −0.0018 (5)
O3 0.0676 (7) 0.0615 (7) 0.0527 (6) −0.0207 (6) 0.0014 (5) 0.0064 (5)
O4 0.0883 (9) 0.0898 (9) 0.0605 (7) 0.0172 (7) 0.0181 (7) 0.0303 (7)
C19 0.0794 (13) 0.0703 (12) 0.0724 (12) 0.0139 (10) −0.0122 (10) −0.0096 (10)
C20 0.0453 (9) 0.0834 (13) 0.0954 (15) 0.0117 (9) 0.0010 (10) −0.0217 (12)
S1 0.0501 (4) 0.0695 (5) 0.0876 (6) 0.0022 (3) 0.0239 (4) −0.0130 (4)
S1' 0.0502 (9) 0.0473 (9) 0.0485 (9) 0.0120 (7) 0.0026 (7) 0.0027 (8)

Geometric parameters (Å, º)

C1—O1 1.423 (2) C11—H11 0.9300
C1—H1A 0.9600 C12—C13 1.370 (3)
C1—H1B 0.9600 C12—H12 0.9300
C1—H1C 0.9600 C13—C14 1.378 (2)
C2—O1 1.3544 (17) C13—H13 0.9300
C2—C3 1.377 (2) C14—C15 1.391 (2)
C2—C7 1.411 (2) C14—H14 0.9300
C3—C4 1.383 (2) C15—C16 1.495 (2)
C3—H3 0.9300 C16—O4 1.2191 (18)
C4—C5 1.388 (2) C16—C17 1.460 (2)
C4—H4 0.9300 C17—C18 1.345 (4)
C5—C6 1.4034 (19) C17—C18' 1.366 (9)
C5—C9 1.4756 (19) C17—S1 1.6709 (17)
C6—C7 1.370 (2) C17—S1' 1.728 (3)
C6—H6 0.9300 C9—O3 1.2225 (16)
C7—O2 1.3625 (17) C19—C20 1.344 (3)
C8—O2 1.415 (2) C19—C18 1.493 (5)
C8—H8A 0.9600 C19—S1' 1.538 (3)
C8—H8B 0.9600 C19—H19 0.9300
C8—H8C 0.9600 C20—C18' 1.483 (10)
C10—C11 1.391 (2) C20—S1 1.656 (2)
C10—C15 1.3979 (19) C20—H20 0.9300
C10—C9 1.501 (2) C18—H18 0.9300
C11—C12 1.382 (2) C18'—H18' 0.9300
O1—C1—H1A 109.5 C13—C14—H14 119.7
O1—C1—H1B 109.5 C15—C14—H14 119.7
H1A—C1—H1B 109.5 C14—C15—C10 119.35 (14)
O1—C1—H1C 109.5 C14—C15—C16 116.43 (13)
H1A—C1—H1C 109.5 C10—C15—C16 124.22 (13)
H1B—C1—H1C 109.5 O4—C16—C17 120.68 (14)
O1—C2—C3 125.24 (14) O4—C16—C15 119.11 (14)
O1—C2—C7 115.09 (13) C17—C16—C15 119.99 (13)
C3—C2—C7 119.67 (13) C18—C17—C18' 103.3 (6)
C2—C3—C4 120.10 (14) C18—C17—C16 130.5 (2)
C2—C3—H3 120.0 C18'—C17—C16 126.3 (5)
C4—C3—H3 120.0 C18—C17—S1 112.7 (2)
C3—C4—C5 120.85 (13) C18'—C17—S1 10.0 (5)
C3—C4—H4 119.6 C16—C17—S1 116.69 (11)
C5—C4—H4 119.6 C18—C17—S1' 5.0 (3)
C4—C5—C6 119.02 (13) C18'—C17—S1' 108.0 (5)
C4—C5—C9 122.54 (13) C16—C17—S1' 125.64 (12)
C6—C5—C9 118.33 (12) S1—C17—S1' 117.35 (12)
C7—C6—C5 120.35 (13) O3—C9—C5 121.81 (13)
C7—C6—H6 119.8 O3—C9—C10 118.66 (13)
C5—C6—H6 119.8 C5—C9—C10 119.52 (12)
O2—C7—C6 125.38 (13) C2—O1—C1 117.90 (13)
O2—C7—C2 114.62 (13) C7—O2—C8 117.72 (12)
C6—C7—C2 120.00 (13) C20—C19—C18 107.0 (2)
O2—C8—H8A 109.5 C20—C19—S1' 122.1 (2)
O2—C8—H8B 109.5 C18—C19—S1' 15.25 (19)
H8A—C8—H8B 109.5 C20—C19—H19 126.5
O2—C8—H8C 109.5 C18—C19—H19 126.5
H8A—C8—H8C 109.5 S1'—C19—H19 111.3
H8B—C8—H8C 109.5 C19—C20—C18' 103.4 (4)
C11—C10—C15 119.17 (14) C19—C20—S1 116.37 (14)
C11—C10—C9 119.58 (13) C18'—C20—S1 13.3 (4)
C15—C10—C9 120.83 (13) C19—C20—H20 121.8
C12—C11—C10 120.58 (16) C18'—C20—H20 134.6
C12—C11—H11 119.7 S1—C20—H20 121.8
C10—C11—H11 119.7 C20—S1—C17 91.91 (11)
C13—C12—C11 120.11 (16) C17—C18—C19 112.0 (3)
C13—C12—H12 119.9 C17—C18—H18 124.0
C11—C12—H12 119.9 C19—C18—H18 124.0
C12—C13—C14 120.26 (16) C19—S1'—C17 92.13 (16)
C12—C13—H13 119.9 C17—C18'—C20 114.1 (8)
C14—C13—H13 119.9 C17—C18'—H18' 123.0
C13—C14—C15 120.52 (16) C20—C18'—H18' 123.0
O1—C2—C3—C4 179.55 (13) C4—C5—C9—C10 21.6 (2)
C7—C2—C3—C4 −0.3 (2) C6—C5—C9—C10 −162.15 (12)
C2—C3—C4—C5 0.6 (2) C11—C10—C9—O3 −131.30 (15)
C3—C4—C5—C6 0.1 (2) C15—C10—C9—O3 41.2 (2)
C3—C4—C5—C9 176.30 (13) C11—C10—C9—C5 47.76 (19)
C4—C5—C6—C7 −1.1 (2) C15—C10—C9—C5 −139.72 (14)
C9—C5—C6—C7 −177.44 (12) C3—C2—O1—C1 −0.8 (2)
C5—C6—C7—O2 −179.37 (13) C7—C2—O1—C1 179.09 (14)
C5—C6—C7—C2 1.3 (2) C6—C7—O2—C8 3.2 (2)
O1—C2—C7—O2 0.10 (18) C2—C7—O2—C8 −177.42 (14)
C3—C2—C7—O2 179.99 (13) C18—C19—C20—C18' 2.3 (7)
O1—C2—C7—C6 179.46 (12) S1'—C19—C20—C18' 4.5 (7)
C3—C2—C7—C6 −0.6 (2) C18—C19—C20—S1 −1.0 (3)
C15—C10—C11—C12 −0.7 (2) S1'—C19—C20—S1 1.2 (3)
C9—C10—C11—C12 171.96 (15) C19—C20—S1—C17 1.00 (17)
C10—C11—C12—C13 0.9 (3) C18'—C20—S1—C17 −13 (3)
C11—C12—C13—C14 −0.3 (3) C18—C17—S1—C20 −0.7 (3)
C12—C13—C14—C15 −0.4 (3) C18'—C17—S1—C20 19 (4)
C13—C14—C15—C10 0.5 (2) C16—C17—S1—C20 −176.59 (13)
C13—C14—C15—C16 −178.31 (15) S1'—C17—S1—C20 −2.63 (14)
C11—C10—C15—C14 0.0 (2) C18'—C17—C18—C19 −3.2 (8)
C9—C10—C15—C14 −172.56 (13) C16—C17—C18—C19 175.46 (19)
C11—C10—C15—C16 178.76 (14) S1—C17—C18—C19 0.3 (4)
C9—C10—C15—C16 6.2 (2) S1'—C17—C18—C19 160 (3)
C14—C15—C16—O4 50.8 (2) C20—C19—C18—C17 0.4 (4)
C10—C15—C16—O4 −127.95 (17) S1'—C19—C18—C17 −172.7 (12)
C14—C15—C16—C17 −123.81 (15) C20—C19—S1'—C17 −2.5 (2)
C10—C15—C16—C17 57.4 (2) C18—C19—S1'—C17 5.3 (9)
O4—C16—C17—C18 −169.2 (3) C18—C17—S1'—C19 −18 (3)
C15—C16—C17—C18 5.4 (4) C18'—C17—S1'—C19 −0.7 (8)
O4—C16—C17—C18' 9.2 (9) C16—C17—S1'—C19 176.50 (15)
C15—C16—C17—C18' −176.3 (9) S1—C17—S1'—C19 3.15 (16)
O4—C16—C17—S1 5.9 (2) C18—C17—C18'—C20 4.8 (13)
C15—C16—C17—S1 −179.57 (11) C16—C17—C18'—C20 −173.9 (6)
O4—C16—C17—S1' −167.53 (16) S1—C17—C18'—C20 −157 (5)
C15—C16—C17—S1' 7.0 (2) S1'—C17—C18'—C20 3.3 (13)
C4—C5—C9—O3 −159.37 (14) C19—C20—C18'—C17 −4.7 (13)
C6—C5—C9—O3 16.9 (2) S1—C20—C18'—C17 162 (4)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C17/C19/C20/S1'/C18' ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O4i 0.93 2.58 3.496 (2) 169
C1—H1A···Cg2ii 0.96 2.99 3.799 (3) 143

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5963).

References

  1. Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010). Acta Cryst. E66, o2358. [DOI] [PMC free article] [PubMed]
  2. Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215. [DOI] [PMC free article] [PubMed]
  3. Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6583.
  4. Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–760. [DOI] [PubMed]
  5. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830. [DOI] [PubMed]
  8. Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Xia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037336/bt5963sup1.cif

e-68-o2844-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037336/bt5963Isup2.hkl

e-68-o2844-Isup2.hkl (219.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037336/bt5963Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812037336/bt5963Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES