Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):o2852. doi: 10.1107/S1600536812037282

2,2′-{[(2,2′-Dieth­oxy-1,1′-binaphthalene-6,6′-di­yl)bis­(4,1-phenyl­ene)]bis­(methan­ylyl­idene)}dimalononitrile

Shikun Chen a,*
PMCID: PMC3470211  PMID: 23125655

Abstract

The title compound, C44H30N4O2, was prepared from 6,6′-dibromo-2,2′-dieth­oxy-1,1′-binaphthalene through a coupling reaction with 4-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)benzaldehyde followed by a Knoevenagel reaction with malononitrile. The dihedral angle between the symmetry-related naphthalene ring systems is 68.82 (8)° while the dihedral angle between the the naphthalene ring system and the adjacent benzene ring is 16.92 (7)°. Four symmetry-independent mol­ecules which are linked by inter­molecular C—H⋯π inter­action generate the packing motif in the crystal structure. One of the CN groups is disordered over two sets of sites in a 0.60 (2):0.40 (2) ratio.

Related literature  

For applications of 6,6′-dibromo-[1,1′-binaphthalene]-2,2′-diol and its derivatives in asymmetric synthesis, see: Hu et al. (1996); Lou et al. (2006); Brunel (2006). For standard bond lengths, see: Allen et al. (1987). graphic file with name e-68-o2852-scheme1.jpg

Experimental  

Crystal data  

  • C44H30N4O2

  • M r = 646.72

  • Tetragonal, Inline graphic

  • a = 8.4556 (12) Å

  • c = 46.991 (9) Å

  • V = 3359.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.24 × 0.15 × 0.08 mm

Data collection  

  • Rigaku MM007HF diffractometer with Saturn724+ CCD detector

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) T min = 0.789, T max = 1.000

  • 11840 measured reflections

  • 1901 independent reflections

  • 1825 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.095

  • S = 1.15

  • 1901 reflections

  • 246 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037282/qm2082sup1.cif

e-68-o2852-sup1.cif (20.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812037282/qm2082Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037282/qm2082Isup3.hkl

e-68-o2852-Isup3.hkl (93.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037282/qm2082Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C11-C16 and C14/C15/C17–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg3i 0.95 2.90 3.710 (3) 144
C10—H10⋯Cg2i 0.95 2.50 3.363 (3) 150
C22—H22CCg2ii 0.98 2.94 3.769 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was supported by the Natural Science Foundation of Anhui Province (KJ2011Z340).

supplementary crystallographic information

Comment

Chiral compounds especially when used as chiral ligands are particularly important in asymmetric synthesis. 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol and its derivatives have received considerable attention in the literature. They are attractive from several points of view in application (Hu et al., 1996; Lou et al., 2006; Brunel, 2006). As part of our search for new 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol compounds, we synthesized the title compound (I), whose X-ray crystal structure is reported herein. No classical inter- or intramolecular hydrogen bonds were found in the structure. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The angle between the planes of the naphthalene rings is 68.82 °.

Experimental

6,6'-dibromo-2,2'-diethoxy-1,1'-binaphthalene (1 g, 2 mmol) in dry THF (45 ml) was treated with 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (1 g, 4.3 mmol) through a coupling reaction to give 4,4'-(2,2'-diethoxy-[1,1'-binaphthalene]-6,6'-diyl)dibenzaldehyde which then reacted with malononitrile to give the title compound as a yellow solid in 83% yield (2 steps). Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of CH\2Cl\2/n-hexane solution over a period of several days.

Refinement

All H atoms were placed in calculated positions, (C - H = 0.95 Å for aromatic, 0.99 Å for methylene and 0.98 Å for methyl H atoms), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Figures

Fig. 1.

Fig. 1.

View of the title compound with 35% probability ellipsoid and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Crystal packing of the title compound [symmetry code: (i) x+1/2, -y+1/2, -z+1/4].

Crystal data

C44H30N4O2 Dx = 1.279 Mg m3
Mr = 646.72 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212 Cell parameters from 7189 reflections
a = 8.4556 (12) Å θ = 1.3–25.4°
c = 46.991 (9) Å µ = 0.08 mm1
V = 3359.7 (10) Å3 T = 173 K
Z = 4 Plate, yellow
F(000) = 1352 0.24 × 0.15 × 0.08 mm

Data collection

Rigaku MM007HF diffractometer with Saturn724+ CCD detector 1901 independent reflections
Radiation source: Rotating Anode 1825 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.043
Detector resolution: 28.5714 pixels mm-1 θmax = 25.3°, θmin = 2.5°
ω scans at fixed χ = 45° h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) k = −8→10
Tmin = 0.789, Tmax = 1.000 l = −56→55
11840 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0613P] where P = (Fo2 + 2Fc2)/3
1901 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 0.17 e Å3
40 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.7522 (2) 0.4017 (2) 0.00856 (3) 0.0384 (4)
N1 −0.4620 (3) 0.2058 (3) −0.23834 (4) 0.0487 (6)
N2 −0.4836 (17) 0.5495 (19) −0.1722 (4) 0.084 (5) 0.40 (2)
C2 −0.4126 (17) 0.4452 (17) −0.1812 (3) 0.053 (3) 0.40 (2)
N2' −0.5300 (8) 0.4570 (17) −0.15877 (19) 0.083 (3) 0.60 (2)
C2' −0.4429 (10) 0.3911 (14) −0.17341 (18) 0.052 (2) 0.60 (2)
C1 −0.4034 (3) 0.2527 (3) −0.21824 (5) 0.0393 (6)
C3 −0.3335 (3) 0.3113 (3) −0.19219 (4) 0.0378 (6)
C4 −0.1873 (3) 0.2674 (3) −0.18449 (5) 0.0416 (7)
H4 −0.1352 0.2004 −0.1977 0.050*
C5 −0.0950 (3) 0.3054 (3) −0.15924 (4) 0.0382 (6)
C6 −0.1387 (3) 0.4106 (3) −0.13769 (5) 0.0433 (7)
H6 −0.2366 0.4654 −0.1388 0.052*
C7 −0.0394 (3) 0.4350 (3) −0.11469 (4) 0.0429 (7)
H7 −0.0706 0.5077 −0.1003 0.051*
C8 0.1050 (3) 0.3565 (3) −0.11186 (4) 0.0343 (6)
C9 0.1473 (3) 0.2537 (3) −0.13358 (5) 0.0465 (7)
H9 0.2446 0.1981 −0.1324 0.056*
C10 0.0515 (4) 0.2308 (4) −0.15674 (5) 0.0510 (8)
H10 0.0859 0.1623 −0.1715 0.061*
C11 0.2097 (3) 0.3794 (3) −0.08678 (4) 0.0323 (6)
C12 0.1510 (3) 0.4466 (3) −0.06116 (4) 0.0317 (6)
H12 0.0432 0.4778 −0.0602 0.038*
C13 0.2448 (3) 0.4678 (3) −0.03786 (4) 0.0300 (5)
H13 0.2009 0.5144 −0.0212 0.036*
C14 0.4059 (3) 0.4221 (3) −0.03779 (4) 0.0298 (5)
C15 0.4660 (3) 0.3549 (3) −0.06345 (4) 0.0330 (6)
C16 0.3656 (3) 0.3356 (3) −0.08715 (4) 0.0373 (6)
H16 0.4077 0.2905 −0.1040 0.045*
C17 0.6258 (3) 0.3076 (3) −0.06415 (5) 0.0407 (7)
H17 0.6681 0.2644 −0.0812 0.049*
C18 0.7207 (3) 0.3226 (3) −0.04090 (4) 0.0402 (6)
H18 0.8278 0.2891 −0.0418 0.048*
C19 0.6604 (3) 0.3879 (3) −0.01535 (4) 0.0336 (6)
C20 0.5060 (3) 0.4402 (3) −0.01356 (4) 0.0290 (5)
C21 0.9066 (3) 0.3277 (4) 0.00773 (5) 0.0444 (7)
H21B 0.9728 0.3782 −0.0071 0.053*
H21A 0.8958 0.2140 0.0031 0.053*
C22 0.9817 (4) 0.3469 (4) 0.03612 (5) 0.0612 (9)
H22C 1.0860 0.2964 0.0360 0.092*
H22A 0.9151 0.2971 0.0507 0.092*
H22B 0.9935 0.4597 0.0404 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0297 (10) 0.0549 (12) 0.0307 (8) −0.0026 (9) −0.0028 (7) 0.0034 (8)
N1 0.0508 (15) 0.0606 (16) 0.0348 (10) −0.0123 (13) −0.0046 (11) −0.0004 (11)
N2 0.074 (7) 0.088 (8) 0.089 (8) 0.031 (6) −0.031 (6) −0.036 (7)
C2 0.049 (6) 0.055 (6) 0.056 (6) 0.006 (5) −0.013 (4) −0.017 (5)
N2' 0.059 (4) 0.127 (8) 0.062 (4) 0.017 (4) −0.008 (3) −0.035 (5)
C2' 0.043 (4) 0.075 (5) 0.039 (3) −0.001 (4) −0.005 (3) −0.010 (3)
C1 0.0405 (16) 0.0455 (16) 0.0320 (11) −0.0067 (13) −0.0014 (11) 0.0021 (11)
C3 0.0402 (16) 0.0434 (16) 0.0298 (11) −0.0030 (13) −0.0034 (11) −0.0053 (11)
C4 0.0444 (17) 0.0506 (17) 0.0299 (11) 0.0004 (14) −0.0020 (11) −0.0085 (12)
C5 0.0461 (16) 0.0423 (16) 0.0261 (10) −0.0009 (13) −0.0048 (11) −0.0045 (10)
C6 0.0406 (16) 0.0567 (18) 0.0326 (12) 0.0080 (14) −0.0031 (11) −0.0093 (12)
C7 0.0448 (16) 0.0551 (18) 0.0287 (11) 0.0052 (14) 0.0002 (11) −0.0127 (11)
C8 0.0410 (15) 0.0383 (15) 0.0236 (10) −0.0049 (12) 0.0002 (10) −0.0006 (10)
C9 0.0489 (17) 0.0541 (18) 0.0366 (12) 0.0131 (15) −0.0110 (12) −0.0146 (12)
C10 0.0564 (19) 0.0589 (19) 0.0378 (13) 0.0142 (16) −0.0111 (13) −0.0197 (13)
C11 0.0376 (15) 0.0367 (14) 0.0226 (10) −0.0047 (12) −0.0007 (10) 0.0004 (10)
C12 0.0319 (14) 0.0358 (14) 0.0272 (10) −0.0034 (11) 0.0015 (9) −0.0020 (10)
C13 0.0337 (14) 0.0337 (13) 0.0227 (10) −0.0034 (11) 0.0040 (9) −0.0031 (9)
C14 0.0328 (14) 0.0331 (14) 0.0236 (10) −0.0053 (11) 0.0031 (9) 0.0022 (9)
C15 0.0363 (15) 0.0392 (15) 0.0236 (10) −0.0031 (11) 0.0047 (10) 0.0010 (10)
C16 0.0437 (16) 0.0470 (16) 0.0213 (10) −0.0006 (13) 0.0048 (10) −0.0040 (10)
C17 0.0400 (16) 0.0538 (18) 0.0282 (11) 0.0033 (13) 0.0077 (11) −0.0033 (12)
C18 0.0308 (14) 0.0561 (18) 0.0338 (11) −0.0001 (13) 0.0056 (11) 0.0038 (12)
C19 0.0354 (15) 0.0413 (15) 0.0242 (10) −0.0066 (12) 0.0007 (10) 0.0056 (10)
C20 0.0303 (14) 0.0321 (14) 0.0245 (10) −0.0042 (11) 0.0033 (9) 0.0045 (10)
C21 0.0308 (15) 0.0590 (19) 0.0433 (13) −0.0011 (14) −0.0002 (11) 0.0104 (13)
C22 0.0456 (19) 0.084 (3) 0.0536 (15) 0.0034 (17) −0.0156 (14) 0.0032 (17)

Geometric parameters (Å, º)

O1—C19 1.371 (3) C11—C12 1.421 (3)
O1—C21 1.448 (3) C12—C13 1.364 (3)
N1—C1 1.138 (3) C12—H12 0.9500
N2—C2 1.148 (8) C13—C14 1.416 (3)
C2—C3 1.413 (9) C13—H13 0.9500
N2'—C2' 1.151 (6) C14—C20 1.427 (3)
C2'—C3 1.446 (7) C14—C15 1.426 (3)
C1—C3 1.447 (3) C15—C16 1.410 (3)
C3—C4 1.340 (4) C15—C17 1.410 (4)
C4—C5 1.456 (3) C16—H16 0.9500
C4—H4 0.9500 C17—C18 1.361 (3)
C5—C10 1.395 (4) C17—H17 0.9500
C5—C6 1.398 (3) C18—C19 1.416 (3)
C6—C7 1.384 (3) C18—H18 0.9500
C6—H6 0.9500 C19—C20 1.381 (3)
C7—C8 1.397 (4) C20—C20i 1.498 (4)
C7—H7 0.9500 C21—C22 1.487 (3)
C8—C9 1.387 (3) C21—H21B 0.9900
C8—C11 1.486 (3) C21—H21A 0.9900
C9—C10 1.370 (3) C22—H22C 0.9800
C9—H9 0.9500 C22—H22A 0.9800
C10—H10 0.9500 C22—H22B 0.9800
C11—C16 1.369 (4)
C19—O1—C21 116.82 (19) C12—C13—C14 121.7 (2)
N2—C2—C3 176.6 (14) C12—C13—H13 119.1
N2'—C2'—C3 178.8 (9) C14—C13—H13 119.1
N1—C1—C3 178.2 (3) C13—C14—C20 122.9 (2)
C4—C3—C2 124.0 (5) C13—C14—C15 116.7 (2)
C4—C3—C2' 123.7 (4) C20—C14—C15 120.4 (2)
C2—C3—C2' 25.8 (5) C16—C15—C17 121.7 (2)
C4—C3—C1 120.7 (2) C16—C15—C14 120.0 (2)
C2—C3—C1 113.0 (6) C17—C15—C14 118.3 (2)
C2'—C3—C1 114.5 (4) C11—C16—C15 122.6 (2)
C3—C4—C5 130.8 (2) C11—C16—H16 118.7
C3—C4—H4 114.6 C15—C16—H16 118.7
C5—C4—H4 114.6 C18—C17—C15 121.3 (2)
C10—C5—C6 117.5 (2) C18—C17—H17 119.3
C10—C5—C4 116.4 (2) C15—C17—H17 119.3
C6—C5—C4 126.1 (2) C17—C18—C19 120.3 (2)
C7—C6—C5 120.0 (2) C17—C18—H18 119.8
C7—C6—H6 120.0 C19—C18—H18 119.8
C5—C6—H6 120.0 O1—C19—C20 117.2 (2)
C6—C7—C8 122.3 (2) O1—C19—C18 121.6 (2)
C6—C7—H7 118.9 C20—C19—C18 121.1 (2)
C8—C7—H7 118.9 C19—C20—C14 118.5 (2)
C9—C8—C7 116.9 (2) C19—C20—C20i 121.5 (2)
C9—C8—C11 120.8 (2) C14—C20—C20i 119.9 (2)
C7—C8—C11 122.3 (2) O1—C21—C22 108.3 (2)
C10—C9—C8 121.4 (3) O1—C21—H21B 110.0
C10—C9—H9 119.3 C22—C21—H21B 110.0
C8—C9—H9 119.3 O1—C21—H21A 110.0
C9—C10—C5 121.9 (2) C22—C21—H21A 110.0
C9—C10—H10 119.1 H21B—C21—H21A 108.4
C5—C10—H10 119.1 C21—C22—H22C 109.5
C16—C11—C12 117.1 (2) C21—C22—H22A 109.5
C16—C11—C8 121.9 (2) H22C—C22—H22A 109.5
C12—C11—C8 121.1 (2) C21—C22—H22B 109.5
C13—C12—C11 122.0 (2) H22C—C22—H22B 109.5
C13—C12—H12 119.0 H22A—C22—H22B 109.5
C11—C12—H12 119.0
N2—C2—C3—C4 −137 (20) C8—C11—C12—C13 179.6 (2)
N2—C2—C3—C2' −39 (19) C11—C12—C13—C14 −0.8 (4)
N2—C2—C3—C1 60 (21) C12—C13—C14—C20 −178.8 (2)
N2'—C2'—C3—C4 117 (46) C12—C13—C14—C15 0.9 (3)
N2'—C2'—C3—C2 18 (45) C13—C14—C15—C16 −0.5 (3)
N2'—C2'—C3—C1 −75 (46) C20—C14—C15—C16 179.2 (2)
N1—C1—C3—C4 134 (10) C13—C14—C15—C17 −179.8 (2)
N1—C1—C3—C2 −62 (10) C20—C14—C15—C17 −0.1 (4)
N1—C1—C3—C2' −34 (10) C12—C11—C16—C15 0.1 (4)
C2—C3—C4—C5 20.8 (11) C8—C11—C16—C15 −179.3 (2)
C2'—C3—C4—C5 −10.3 (8) C17—C15—C16—C11 179.3 (2)
C1—C3—C4—C5 −177.6 (3) C14—C15—C16—C11 0.1 (4)
C3—C4—C5—C10 175.7 (3) C16—C15—C17—C18 −178.1 (3)
C3—C4—C5—C6 −5.3 (5) C14—C15—C17—C18 1.1 (4)
C10—C5—C6—C7 −1.4 (4) C15—C17—C18—C19 −0.5 (4)
C4—C5—C6—C7 179.7 (3) C21—O1—C19—C20 172.0 (2)
C5—C6—C7—C8 −0.5 (4) C21—O1—C19—C18 −8.0 (3)
C6—C7—C8—C9 1.2 (4) C17—C18—C19—O1 178.8 (2)
C6—C7—C8—C11 −178.3 (2) C17—C18—C19—C20 −1.2 (4)
C7—C8—C9—C10 0.1 (4) O1—C19—C20—C14 −177.8 (2)
C11—C8—C9—C10 179.6 (3) C18—C19—C20—C14 2.2 (4)
C8—C9—C10—C5 −2.1 (5) O1—C19—C20—C20i −1.4 (3)
C6—C5—C10—C9 2.7 (4) C18—C19—C20—C20i 178.6 (2)
C4—C5—C10—C9 −178.3 (3) C13—C14—C20—C19 178.2 (2)
C9—C8—C11—C16 17.4 (4) C15—C14—C20—C19 −1.5 (3)
C7—C8—C11—C16 −163.2 (3) C13—C14—C20—C20i 1.7 (3)
C9—C8—C11—C12 −162.0 (2) C15—C14—C20—C20i −177.98 (19)
C7—C8—C11—C12 17.5 (4) C19—O1—C21—C22 −176.2 (2)
C16—C11—C12—C13 0.3 (4)

Symmetry code: (i) y, x, −z.

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C11-C16 and C14/C15/C17–C20 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C4—H4···Cg3ii 0.95 2.90 3.710 (3) 144
C10—H10···Cg2ii 0.95 2.50 3.363 (3) 150
C22—H22C···Cg2iii 0.98 2.94 3.769 (3) 143

Symmetry codes: (ii) −x+1/2, y−1/2, −z−1/4; (iii) y+1, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2082).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Brunel, J. M. (2006). Chem. Rev. 105, 857–897. [DOI] [PubMed]
  3. Hu, Q.-S., Vitharana, D., Zheng, X.-F., Wu, C., Kwan, C. M. S. & Pu, L. (1996). J. Org. Chem. 61, 8370–8377.
  4. Lou, S., Moquist, P. N. & Schaus, S. E. (2006). J. Am. Chem. Soc. 128, 12660–12661. [DOI] [PubMed]
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037282/qm2082sup1.cif

e-68-o2852-sup1.cif (20.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812037282/qm2082Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037282/qm2082Isup3.hkl

e-68-o2852-Isup3.hkl (93.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037282/qm2082Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES