Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):o2859. doi: 10.1107/S1600536812037026

2-(3,5-Dimethyl-1,1-dioxo-2H-1λ6,2,6-thia­diazin-4-yl)benzoic acid

Nilay Bhatt a, Pralav Bhatt b, Thavendran Govender c, Hendrik G Kruger b, Glenn E M Maguire b,*
PMCID: PMC3470217  PMID: 23125661

Abstract

In the title mol­ecule, C12H12N2O4S, the S atom of the thia­diazine ring deviates by 0.5104 (4) Å from the mean plane of the other five atoms [largest deviation = 0.0623 (15) Å] giving a slightly distorted sofa conformation. The carb­oxy H atom was refined as disordered over two sets of sites with refined occupancies of 0.58 (2) and 0.48 (2). This corresponds to rotational disorder of the C=O and O—H groups about the attached C—C bond. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds connect the mol­ecules into chains along [110].

Related literature  

The title compound is a phenyl acid thia­diazine derivative. For synthetic background and applications of 1,2,6-thia­diazine-1,1-dioxide derivatives, see: Wright (1964); Breining et al. (1995). For a related structure, see: Bhatt et al. (2012)graphic file with name e-68-o2859-scheme1.jpg

Experimental  

Crystal data  

  • C12H12N2O4S

  • M r = 280.30

  • Monoclinic, Inline graphic

  • a = 10.5048 (14) Å

  • b = 10.4254 (13) Å

  • c = 11.1294 (14) Å

  • β = 92.772 (4)°

  • V = 1217.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.24 × 0.19 × 0.18 mm

Data collection  

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.936, T max = 0.952

  • 5724 measured reflections

  • 3030 independent reflections

  • 2573 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.103

  • S = 1.05

  • 3030 reflections

  • 187 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037026/lh5507sup1.cif

e-68-o2859-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037026/lh5507Isup2.hkl

e-68-o2859-Isup2.hkl (148.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037026/lh5507Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.97 (1) 2.09 (2) 2.9699 (18) 151 (2)
O4—H4⋯O3ii 0.97 (3) 1.64 (3) 2.6103 (19) 177 (3)
O3—H3⋯O4ii 0.97 (3) 1.67 (3) 2.6103 (19) 161 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors wish to thank Dr Hong Su from the University of Cape Town for assistance with the data collection and refinement.

supplementary crystallographic information

Comment

The synthesis of 1,2,6-thiadiazine-1,1-dioxides derivatives was first reported using sulfamide with alpha and beta diketones (Wright, 1964). Anti-HIV-1 activity for this family of structures was also reported (Breining et al., 1995). For this reason we are interested in this class of compounds as potential agents in other diseases. The crystal structure of the title compound is described herein.

The molecular structure of the title compound is shown in Fig. 1. It is the second 3,5-dimethyl based structure reported with an aromatic ring at position 4 of the thiadiazine ring. Previously we have reported the phenyl ethyl and methyl ester (Bhatt et al., 2012). It is the first containing an acid functional group in the broader family of 1,2,6-thiadiazine-1,1-dioxides. The S atom of the thiadiazine ring deviates by 0.5104 (4) Å from the plane of the other five atoms [largest deviation 0.0623 (15) Å] giving a slightly distorted sofa conformation. The carboxylic acid H atom was refined as disordered over two sets of sites with refined occupancies 0.58 (2) and 0.48 (2). This corresponds to roational disorder of the C═O and O—H groups about the attached C—C bond. In the crystal, O—H···O and N—H···O hydrogen bonds connect molecules into chains along [110] (Fig. 2).

Experimental

2-(2, 4-dioxopentan-3-yl) benzoic acid (0.072 mol) and sulfamide (0.072 mol) were dissolved in methanol (70 ml). Anhydrous hydrogen chloride gas was bubbled into the mixture until the temperature increased to 323 K. The contents of the reaction were then refluxed for 3hrs. The reaction mixture was cooled, filtered and the filtrate was concentrated under reduced pressure. The residual solid was treated with NaOH (0.138 mol) in water (200 ml), the contents were heated at 343 K for 2.5 hrs. The reaction progress was monitored by TLC ethyl acetate/hexane (80:20 Rf = 1/2). The reaction mixture was cooled and acidified using concentrated HCl to get the crude acid as an oil. To this oily residue was added a solution of methanol/ethyl acetate (10 ml) (10/90) which yielded a white colourless solid (79%). M.p.= 523 K. Crystals suitable for X-ray analysis were grown in dioxane/water at room temprature.

Refinement

All hydrogen atoms, except H1, H3 and H4, were placed in idealized positions and refined with geometric constraints [C—H = 0.95 - 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The hydrogen atom H1 was located in a difference Fourier map and refined with O—H distance restraint to the value of 0.97 (1) Å. The carboxy hydroxyl hydrogen is distributed over two sites: H3 and H4, were both located in a difference Fourier map and refined with a O—H distance restraint to the value of 0.97 (1) Å. The site occupancy factors refined to 0.48 (8) for H3 and 0.52 (8) for H4.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 40% probability. Atoms H3 and H4 are disorder components.

Fig. 2.

Fig. 2.

The hydrogen bonding interactions of the title compound along [110]. All H atoms except those involved in hydrogen bonding have been omitted for clarity.

Crystal data

C12H12N2O4S F(000) = 584
Mr = 280.30 Dx = 1.529 Mg m3Dm = 0 Mg m3Dm measured by not measured
Monoclinic, P21/n Melting point: 523 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 10.5048 (14) Å Cell parameters from 5724 reflections
b = 10.4254 (13) Å θ = 2.6–28.4°
c = 11.1294 (14) Å µ = 0.28 mm1
β = 92.772 (4)° T = 173 K
V = 1217.4 (3) Å3 0, colourless
Z = 4 0.24 × 0.19 × 0.18 mm

Data collection

Bruker Kappa DUO APEXII diffractometer 3030 independent reflections
Radiation source: fine-focus sealed tube 2573 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
0.5° φ scans and ω scans θmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −12→14
Tmin = 0.936, Tmax = 0.952 k = −13→12
5724 measured reflections l = −11→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.4988P] where P = (Fo2 + 2Fc2)/3
3030 reflections (Δ/σ)max = 0.001
187 parameters Δρmax = 0.37 e Å3
3 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.98957 (3) 0.13712 (4) 0.12970 (3) 0.02250 (12)
O1 1.01274 (12) 0.00736 (13) 0.16838 (11) 0.0344 (3)
O2 1.09339 (11) 0.20118 (15) 0.07866 (12) 0.0395 (3)
O3 0.39308 (11) 0.41036 (12) 0.06653 (11) 0.0311 (3)
O4 0.60472 (11) 0.39428 (13) 0.08005 (13) 0.0353 (3)
N1 0.87045 (12) 0.13786 (13) 0.02772 (11) 0.0231 (3)
N2 0.93605 (12) 0.21970 (13) 0.23740 (12) 0.0241 (3)
C1 0.65248 (16) 0.09799 (18) −0.03955 (14) 0.0285 (3)
H1A 0.5677 0.0883 −0.0076 0.043*
H1B 0.6784 0.0168 −0.0754 0.043*
H1C 0.6500 0.1653 −0.1010 0.043*
C2 0.74610 (14) 0.13394 (14) 0.06012 (13) 0.0201 (3)
C3 0.71616 (13) 0.16832 (14) 0.17403 (13) 0.0192 (3)
C4 0.81280 (14) 0.22158 (14) 0.25478 (13) 0.0208 (3)
C5 0.77422 (16) 0.29238 (17) 0.36412 (15) 0.0293 (4)
H5A 0.8483 0.3374 0.4007 0.044*
H5B 0.7416 0.2314 0.4222 0.044*
H5C 0.7076 0.3547 0.3412 0.044*
C6 0.58294 (14) 0.15746 (14) 0.21603 (13) 0.0204 (3)
C7 0.48160 (14) 0.24135 (14) 0.18462 (13) 0.0206 (3)
C8 0.36101 (15) 0.21905 (16) 0.22911 (14) 0.0252 (3)
H8 0.2925 0.2749 0.2067 0.030*
C9 0.34023 (16) 0.11711 (17) 0.30514 (15) 0.0292 (4)
H9 0.2581 0.1035 0.3349 0.035*
C10 0.43933 (16) 0.03505 (17) 0.33774 (15) 0.0296 (4)
H10 0.4257 −0.0349 0.3903 0.036*
C11 0.55916 (16) 0.05546 (15) 0.29322 (14) 0.0263 (3)
H11 0.6267 −0.0015 0.3159 0.032*
C12 0.49362 (14) 0.35576 (14) 0.10521 (14) 0.0217 (3)
H4 0.606 (4) 0.469 (2) 0.028 (3) 0.030 (16)* 0.52 (8)
H3 0.406 (6) 0.491 (3) 0.025 (5) 0.06 (2)* 0.48 (8)
H1 0.892 (2) 0.113 (2) −0.0528 (8) 0.047 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01708 (18) 0.0281 (2) 0.02257 (19) 0.00231 (14) 0.00382 (13) −0.00124 (14)
O1 0.0401 (7) 0.0339 (7) 0.0292 (6) 0.0161 (6) 0.0017 (5) 0.0019 (5)
O2 0.0237 (6) 0.0582 (9) 0.0374 (7) −0.0106 (6) 0.0105 (5) −0.0040 (6)
O3 0.0259 (6) 0.0294 (6) 0.0376 (7) 0.0023 (5) −0.0030 (5) 0.0086 (5)
O4 0.0255 (6) 0.0308 (6) 0.0503 (8) 0.0038 (5) 0.0102 (5) 0.0165 (6)
N1 0.0207 (6) 0.0306 (7) 0.0182 (6) 0.0028 (5) 0.0029 (5) −0.0019 (5)
N2 0.0201 (6) 0.0278 (7) 0.0246 (6) 0.0012 (5) 0.0017 (5) −0.0048 (5)
C1 0.0275 (8) 0.0347 (9) 0.0231 (7) −0.0019 (7) −0.0012 (6) −0.0041 (7)
C2 0.0201 (7) 0.0183 (7) 0.0219 (7) 0.0013 (5) 0.0018 (5) 0.0012 (6)
C3 0.0182 (6) 0.0178 (6) 0.0218 (7) 0.0022 (5) 0.0030 (5) 0.0010 (5)
C4 0.0228 (7) 0.0193 (7) 0.0204 (6) 0.0026 (6) 0.0026 (5) 0.0000 (5)
C5 0.0275 (8) 0.0350 (9) 0.0256 (7) 0.0028 (7) 0.0024 (6) −0.0096 (7)
C6 0.0196 (7) 0.0211 (7) 0.0207 (6) −0.0005 (6) 0.0035 (5) −0.0006 (5)
C7 0.0191 (7) 0.0206 (7) 0.0222 (7) −0.0010 (6) 0.0027 (5) −0.0011 (6)
C8 0.0191 (7) 0.0281 (8) 0.0285 (7) 0.0005 (6) 0.0031 (6) −0.0019 (6)
C9 0.0242 (8) 0.0326 (9) 0.0313 (8) −0.0066 (7) 0.0081 (6) −0.0011 (7)
C10 0.0338 (9) 0.0278 (8) 0.0279 (8) −0.0048 (7) 0.0071 (6) 0.0039 (7)
C11 0.0277 (8) 0.0233 (8) 0.0281 (7) 0.0024 (6) 0.0038 (6) 0.0036 (6)
C12 0.0212 (7) 0.0202 (7) 0.0236 (7) 0.0012 (6) 0.0016 (5) −0.0014 (6)

Geometric parameters (Å, º)

S1—O2 1.4206 (12) C3—C6 1.5011 (19)
S1—O1 1.4368 (13) C4—C5 1.496 (2)
S1—N2 1.5998 (13) C5—H5A 0.9800
S1—N1 1.6483 (13) C5—H5B 0.9800
O3—C12 1.2573 (19) C5—H5C 0.9800
O3—H3 0.9699 (10) C6—C11 1.397 (2)
O4—C12 1.2781 (18) C6—C7 1.409 (2)
O4—H4 0.9699 (10) C7—C8 1.402 (2)
N1—C2 1.3724 (19) C7—C12 1.493 (2)
N1—H1 0.9698 (10) C8—C9 1.382 (2)
N2—C4 1.3185 (19) C8—H8 0.9500
C1—C2 1.494 (2) C9—C10 1.382 (2)
C1—H1A 0.9800 C9—H9 0.9500
C1—H1B 0.9800 C10—C11 1.391 (2)
C1—H1C 0.9800 C10—H10 0.9500
C2—C3 1.369 (2) C11—H11 0.9500
C3—C4 1.435 (2)
O2—S1—O1 116.12 (8) C4—C5—H5A 109.5
O2—S1—N2 110.55 (8) C4—C5—H5B 109.5
O1—S1—N2 110.05 (7) H5A—C5—H5B 109.5
O2—S1—N1 107.12 (8) C4—C5—H5C 109.5
O1—S1—N1 108.82 (8) H5A—C5—H5C 109.5
N2—S1—N1 103.34 (7) H5B—C5—H5C 109.5
C12—O3—H3 115 (4) C11—C6—C7 118.02 (13)
C12—O4—H4 115 (2) C11—C6—C3 116.49 (13)
C2—N1—S1 121.29 (10) C7—C6—C3 125.49 (13)
C2—N1—H1 120.0 (14) C8—C7—C6 119.63 (14)
S1—N1—H1 115.7 (14) C8—C7—C12 116.44 (13)
C4—N2—S1 120.07 (11) C6—C7—C12 123.94 (13)
C2—C1—H1A 109.5 C9—C8—C7 121.06 (15)
C2—C1—H1B 109.5 C9—C8—H8 119.5
H1A—C1—H1B 109.5 C7—C8—H8 119.5
C2—C1—H1C 109.5 C10—C9—C8 119.82 (15)
H1A—C1—H1C 109.5 C10—C9—H9 120.1
H1B—C1—H1C 109.5 C8—C9—H9 120.1
C3—C2—N1 119.99 (14) C9—C10—C11 119.65 (15)
C3—C2—C1 125.51 (14) C9—C10—H10 120.2
N1—C2—C1 114.40 (13) C11—C10—H10 120.2
C2—C3—C4 119.62 (13) C10—C11—C6 121.82 (15)
C2—C3—C6 121.88 (13) C10—C11—H11 119.1
C4—C3—C6 118.44 (12) C6—C11—H11 119.1
N2—C4—C3 124.92 (13) O3—C12—O4 122.93 (14)
N2—C4—C5 115.67 (13) O3—C12—C7 118.07 (13)
C3—C4—C5 119.29 (13) O4—C12—C7 119.00 (13)
O2—S1—N1—C2 −152.60 (12) C4—C3—C6—C11 −78.20 (18)
O1—S1—N1—C2 81.12 (13) C2—C3—C6—C7 −75.8 (2)
N2—S1—N1—C2 −35.82 (14) C4—C3—C6—C7 101.44 (18)
O2—S1—N2—C4 143.83 (13) C11—C6—C7—C8 −1.2 (2)
O1—S1—N2—C4 −86.58 (14) C3—C6—C7—C8 179.14 (14)
N1—S1—N2—C4 29.49 (14) C11—C6—C7—C12 178.69 (14)
S1—N1—C2—C3 20.0 (2) C3—C6—C7—C12 −0.9 (2)
S1—N1—C2—C1 −163.46 (12) C6—C7—C8—C9 1.1 (2)
N1—C2—C3—C4 6.8 (2) C12—C7—C8—C9 −178.81 (15)
C1—C2—C3—C4 −169.34 (15) C7—C8—C9—C10 −0.3 (3)
N1—C2—C3—C6 −175.96 (13) C8—C9—C10—C11 −0.3 (3)
C1—C2—C3—C6 7.9 (2) C9—C10—C11—C6 0.2 (3)
S1—N2—C4—C3 −9.0 (2) C7—C6—C11—C10 0.6 (2)
S1—N2—C4—C5 174.88 (12) C3—C6—C11—C10 −179.72 (14)
C2—C3—C4—N2 −13.2 (2) C8—C7—C12—O3 −12.3 (2)
C6—C3—C4—N2 169.49 (14) C6—C7—C12—O3 167.81 (15)
C2—C3—C4—C5 162.84 (15) C8—C7—C12—O4 167.35 (15)
C6—C3—C4—C5 −14.5 (2) C6—C7—C12—O4 −12.6 (2)
C2—C3—C6—C11 104.52 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.97 (1) 2.09 (2) 2.9699 (18) 151 (2)
O4—H4···O3ii 0.97 (3) 1.64 (3) 2.6103 (19) 177 (3)
O3—H3···O4ii 0.97 (3) 1.67 (3) 2.6103 (19) 161 (5)

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5507).

References

  1. Bhatt, N., Bhatt, P., Vyas, K. B., Nimavat, K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o2160. [DOI] [PMC free article] [PubMed]
  2. Breining, T., Cimpoia, A. R., Mansour, T. S., Cammack, N., Hopewell, P. & Ashman, C. (1995). Heterocycles, 41, 87–94.
  3. Bruker (2006). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wright, J. B. (1964). J. Org. Chem. 29, 1905–1909.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812037026/lh5507sup1.cif

e-68-o2859-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037026/lh5507Isup2.hkl

e-68-o2859-Isup2.hkl (148.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037026/lh5507Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES